Patents by Inventor Thomas E. Loop

Thomas E. Loop has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11624119
    Abstract: A centrifugal molten regolith electrolysis (MRE) reactor that can volatilize and capture volatiles (i.e., 3He or other noble gases) and electrochemically decompose, while under centrifugal action, lunar regolith into oxygen, metals, and semiconductor materials is disclosed.
    Type: Grant
    Filed: September 5, 2020
    Date of Patent: April 11, 2023
    Inventor: Thomas E Loop
  • Publication number: 20220025535
    Abstract: A centrifugal molten regolith electrolysis (MRE) reactor that can volatilize and capture volatiles (i.e., 3He or other noble gases) and electrochemically decompose, while under centrifugal action, lunar regolith into oxygen, metals, and semiconductor materials is disclosed.
    Type: Application
    Filed: September 5, 2020
    Publication date: January 27, 2022
    Inventor: Thomas E. Loop
  • Publication number: 20190299181
    Abstract: The machinery and methods disclosed herein are based on the use of a specialized extruder configured to continuously convey and plasticize/moltenize selected lignocellulosic biomass and/or waste plastic materials into a novel variable volume tubular reactor, wherein the plasticized/moltenized material undergoes reaction with circumferentially injected supercritical water—thereby yielding valuable simple sugar solutions and/or liquid hydrocarbon mixtures (e.g., “neodiesel”), both of which are key chemical commodity products. The reaction time may be adjusted by changing the reactor volume. The machinery includes four zones: (1) a feedstock conveyance and plasticization/moltenization zone; (2) a steam generation and manifold distribution zone; (3) a central supercritical water reaction zone; and (4) a pressure let-down and reaction product separation zone.
    Type: Application
    Filed: April 2, 2018
    Publication date: October 3, 2019
    Applicant: Xtrudx Technologies, Inc.
    Inventors: James D. Flynn, Thomas E. Loop, Graham G. Allan
  • Patent number: 10421052
    Abstract: The machinery and methods disclosed herein are based on the use of a specialized extruder configured to continuously convey and plasticize/moltenize selected lignocellulosic biomass and/or waste plastic materials into a novel variable volume tubular reactor, wherein the plasticized/moltenized material undergoes reaction with circumferentially injected supercritical water—thereby yielding valuable simple sugar solutions and/or liquid hydrocarbon mixtures (e.g., “neodiesel”), both of which are key chemical commodity products. The reaction time may be adjusted by changing the reactor volume. The machinery includes four zones: (1) a feedstock conveyance and plasticization/moltenization zone; (2) a steam generation and manifold distribution zone; (3) a central supercritical water reaction zone; and (4) a pressure let-down and reaction product separation zone.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: September 24, 2019
    Inventors: James D. Flynn, Thomas E. Loop, Graham G. Allan
  • Patent number: 9932532
    Abstract: A method for transforming selected renewable oils and fats, and optionally polyester waste plastic materials, into a plurality of reaction products via supercritical water is disclosed. The method comprises: conveying the selected oils and fats material through an extruder, wherein the extruder is configured to continuously convey the selected oils and fats material to a supercritical fluid reaction zone; injecting hot compressed water into the supercritical fluid reaction zone, while the extruder is conveying the selected oil and fats material into the supercritical fluid reaction zone so as to yield a mixture; retaining the mixture within the reaction zone for a period of time sufficient to yield the plurality of reaction products.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: April 3, 2018
    Assignee: Xtrudx Technologies, Inc.
    Inventors: Graham Allan, Thomas E. Loop, James D. Flynn
  • Patent number: 9932285
    Abstract: A method for transforming selected plant or plant-derived materials, and optionally selected waste plastics, into a plurality of phenolic reaction products having a lower sulphur content than the original feedstock, via supercritical water is disclosed. The method comprises: conveying the selected plant or plant-derived materials, and optionally waste plastic material, through an extruder, wherein the extruder is configured to continuously convey the selected feedstock to a supercritical fluid reaction zone; injecting hot compressed water into the supercritical fluid reaction zone, while the extruder is conveying the selected plant and/or plant-derived mixture and optionally waste plastic material into the supercritical fluid reaction zone so as to yield a water-containing mixture; retaining the mixture within the reaction zone for a period of time sufficient to yield the plurality of phenolic reaction products having a lower sulphur content than the original feedstock.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: April 3, 2018
    Assignee: Xtrudx Technologies, Inc.
    Inventors: Graham Allan, Thomas E. Loop, James D. Flynn
  • Publication number: 20150147450
    Abstract: A method for enhancing the nutritional value of plant tissue by reaction with supercritical water is disclosed. The method comprises: conveying a selected plant tissue material through an extruder, wherein the extruder is configured to continuously convey the plant tissue material to a supercritical fluid reaction zone; injecting hot compressed water into the supercritical fluid reaction zone, while the extruder is conveying the selected plant tissue material into the supercritical fluid reaction zone so as to yield a mixture; retaining the mixture within the reaction zone for a period of time sufficient to yield a plurality of plant tissue reaction products. The reaction zone may be characterized by a tubular reactor having an adjustably positionable inner tubular spear, wherein the tubular reactor and the inner tubular spear further define an annular space within the reaction zone, and wherein the mixture flows through the annular space and into a reaction products chamber or vessel.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 28, 2015
    Applicant: Xtrudx Technologies, Inc.
    Inventors: Graham Allan, Thomas E. Loop, James D. Flynn
  • Publication number: 20150148566
    Abstract: A method for transforming selected plant or plant-derived materials, and optionally selected waste plastics, into a plurality of phenolic reaction products having a lower sulphur content than the original feedstock, via supercritical water is disclosed. The method comprises: conveying the selected plant or plant-derived materials, and optionally waste plastic material, through an extruder, wherein the extruder is configured to continuously convey the selected feedstock to a supercritical fluid reaction zone; injecting hot compressed water into the supercritical fluid reaction zone, while the extruder is conveying the selected plant and/or plant-derived mixture and optionally waste plastic material into the supercritical fluid reaction zone so as to yield a water-containing mixture; retaining the mixture within the reaction zone for a period of time sufficient to yield the plurality of phenolic reaction products having a lower sulphur content than the original feedstock.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 28, 2015
    Applicant: Xtrudx Technologies, Inc.
    Inventors: Graham Allan, Thomas E. Loop, James D. Flynn
  • Publication number: 20150144837
    Abstract: A method for transforming selected renewable oils and fats, and optionally polyester waste plastic materials, into a plurality of reaction products via supercritical water is disclosed. The method comprises: conveying the selected oils and fats material through an extruder, wherein the extruder is configured to continuously convey the selected oils and fats material to a supercritical fluid reaction zone; injecting hot compressed water into the supercritical fluid reaction zone, while the extruder is conveying the selected oil and fats material into the supercritical fluid reaction zone so as to yield a mixture; retaining the mixture within the reaction zone for a period of time sufficient to yield the plurality of reaction products.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 28, 2015
    Applicant: XTRUDX TECHNOLOGIES, INC.
    Inventors: Graham Allan, Thomas E. Loop, James D. Flynn
  • Patent number: 8980143
    Abstract: A method for transforming a selected polymeric material into a plurality of reaction products via supercritical water is disclosed. The method comprises: conveying the selected polymeric material through an extruder, wherein the extruder is configured to continuously convey the selected polymeric material to a supercritical fluid reaction zone; injecting hot compressed water into the supercritical fluid reaction zone, while the extruder is conveying the selected polymeric material into the supercritical fluid reaction zone so as to yield a mixture; retaining the mixture within the reaction zone for a period of time sufficient to yield the plurality of reaction products. The reaction zone may be characterized by a tubular reactor having an adjustably positionable inner tubular spear, wherein the tubular reactor and the inner tubular spear further define an annular space within the reaction zone, and wherein the mixture flows through the annular space and into a reaction products chamber.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: March 17, 2015
    Inventors: Thomas E. Loop, James D. Flynn, Graham Allan, Steven C. Van Swearingen, Kevin O. Gaw
  • Publication number: 20120184788
    Abstract: A method for transforming a selected polymeric material into a plurality of reaction products via supercritical water is disclosed. The method comprises: conveying the selected polymeric material through an extruder, wherein the extruder is configured to continuously convey the selected polymeric material to a supercritical fluid reaction zone; injecting hot compressed water into the supercritical fluid reaction zone, while the extruder is conveying the selected polymeric material into the supercritical fluid reaction zone so as to yield a mixture; retaining the mixture within the reaction zone for a period of time sufficient to yield the plurality of reaction products. The reaction zone may be characterized by a tubular reactor having an adjustably positionable inner tubular spear, wherein the tubular reactor and the inner tubular spear further define an annular space within the reaction zone, and wherein the mixture flows through the annular space and into a reaction products chamber.
    Type: Application
    Filed: November 15, 2011
    Publication date: July 19, 2012
    Applicant: XTRUDX TECHNOLOGIES, INC.
    Inventors: Thomas E. Loop, James D. Flynn, Graham Allan, Steven C. Van Swearingen, Kevin O. Gaw
  • Patent number: 8057666
    Abstract: A supercritical fluid polymer depolymerization machine is disclosed herein, which machine is capable of converting a wide range of biomass and/or waste plastic materials into a plurality of reaction products (liquid and gaseous) including fermentable sugars, hydrocarbons, and various aromatic substances that, in turn, are readily convertible into liquid transportation fuel known as “neodiesel.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 15, 2011
    Assignee: Xtrudx Technologies, Inc.
    Inventors: Graham Allan, Thomas E. Loop, James D. Flynn
  • Patent number: 7955508
    Abstract: Disclosed herein are supercritical fluid biomass conversion machines, systems, and methods for converting a wide range of biomass materials into a plurality of reaction products including fermentable sugars and various aromatic substances.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: June 7, 2011
    Assignee: Xtrudx Technologies, Inc.
    Inventors: Graham Allan, Thomas E. Loop, James D. Flynn
  • Publication number: 20100329938
    Abstract: A supercritical fluid polymer depolymerization machine is disclosed herein, which machine is capable of converting a wide range of biomass and/or waste plastic materials into a plurality of reaction products (liquid and gaseous) including fermentable sugars, hydrocarbons, and various aromatic substances that, in turn, are readily convertible into liquid transportation fuel known as “neodiesel.
    Type: Application
    Filed: June 30, 2010
    Publication date: December 30, 2010
    Applicant: XTRUDX TECHNOLOGIES, INC.
    Inventors: Graham Allan, Thomas E. Loop, James D. Flynn
  • Publication number: 20100063271
    Abstract: Disclosed herein are supercritical fluid biomass conversion machines, systems, and methods for converting a wide range of biomass materials into a plurality of reaction products including fermentable sugars and various aromatic substances.
    Type: Application
    Filed: March 11, 2009
    Publication date: March 11, 2010
    Applicant: Xtrudx Technologies, Inc.
    Inventors: G. Graham Allan, Thomas E. Loop, James D. Flynn