Patents by Inventor Thomas E. Moylan

Thomas E. Moylan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240136534
    Abstract: An electrode assembly includes a current collector, a lithium metal foil, and an alloyed interface that chemically binds the current collector and the lithium metal foil. In certain variations, the alloyed interface includes an intermediate layer disposed between the current collector and the lithium metal foil, a portion of the current collector adjacent to the intermediate layer is alloyed with the indium, gallium, or alloy of indium and gallium defining the intermediate layer, and a portion of the lithium metal foil adjacent to the intermediate layer is alloyed with the indium, gallium, or alloy of indium and gallium defining the intermediate layer. In other variations, the alloyed interface includes a copper-lithium alloy.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 25, 2024
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Diptak BHATTACHARYA, Caleb REESE, Thomas E. MOYLAN, Andrew Clay BOBEL, Anil K. SACHDEV
  • Publication number: 20240047693
    Abstract: An electrode assembly that includes a current collector, a lithium foil, and a solid solution interface that chemically binds the current collector and the lithium foil is provided. The solid solution interface includes a portion of the current collector that is impregnated with lithium atoms diffused from the lithium foil. In some variations, a method for forming the electrode assembly includes heating a precursor electrode assembly that includes a current collector and a lithium metal film to a temperature that is less than a melting point of lithium, so that lithium atoms diffuse into the current collector during the heating. In other variations, a method for forming the electrode assembly includes disposing a molten lithium onto a heated current collector to form a precursor electrode assembly, and cooling the assembly to form a lithium metal layer that is chemically bonded to the current collector.
    Type: Application
    Filed: August 2, 2022
    Publication date: February 8, 2024
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jeffrey David CAIN, Thomas E. MOYLAN, Caleb REESE, Sayed Youssef Sayed NAGY, Andrew Clay BOBEL
  • Publication number: 20230411610
    Abstract: The present disclosure provides a method for forming a pre-lithiated layered anode material. The method includes removing cations from a precursor material including a layered ionic compound to form creates a two-dimensional structure that defines a layered anode material. The method further includes inserting lithium ions using an anion insertion wet-chemical process into the layered anode materials to form the pre-lithiated layered anode material. The anion insertion wet-chemical process can be the same as or different form the cation extraction wet-chemical process. In each instance, the precursor material is be represented by MX2, where M is one of calcium (Ca) and magnesium (Mg) and X is one of silicon (Si), germanium (Ge), and boron (B) and the precursor material has alternating layers of M and X.
    Type: Application
    Filed: June 15, 2022
    Publication date: December 21, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yuntao GU, Jeffrey David CAIN, Sayed Youssef Sayed NAGY, Nicholas Paul William PIECZONKA, Thomas E. MOYLAN
  • Patent number: 11769884
    Abstract: An electrode structure for a battery includes a middle layer made of an electrically conductive perforated mesh having a top surface, a bottom surface, a plurality of interconnected electrically conductive segments and a plurality of perforations among adjacent ones of the interconnected segments. A top layer of an electrode material is disposed on the top surface, and a bottom layer of the electrode material is disposed on the bottom surface, such that the top and bottom layers are disposed in physical contact with each other through the perforations in the middle layer. A method of manufacturing the electrode structure includes providing the layer of perforated mesh, applying the top and bottom layers of electrode material to the top and bottom surfaces, and curing the top and bottom layers of electrode material using one or more of heat, electromagnetic radiation and convection to produce a layer of cured electrode structure.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: September 26, 2023
    Assignee: GM Global Technology Operations LLC
    Inventors: Anil K. Sachdev, Thomas E. Moylan
  • Publication number: 20230238541
    Abstract: An electrode structure for a battery includes a middle layer made of an electrically conductive perforated mesh having a top surface, a bottom surface, a plurality of interconnected electrically conductive segments and a plurality of perforations among adjacent ones of the interconnected segments. A top layer of an electrode material is disposed on the top surface, and a bottom layer of the electrode material is disposed on the bottom surface, such that the top and bottom layers are disposed in physical contact with each other through the perforations in the middle layer. A method of manufacturing the electrode structure includes providing the layer of perforated mesh, applying the top and bottom layers of electrode material to the top and bottom surfaces, and curing the top and bottom layers of electrode material using one or more of heat, electromagnetic radiation and convection to produce a layer of cured electrode structure.
    Type: Application
    Filed: January 27, 2022
    Publication date: July 27, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Anil K. Sachdev, Thomas E. Moylan
  • Publication number: 20230060634
    Abstract: The present disclosure provides methods for forming a two-dimensional silicon oxide negative electroactive material. The methods include contacting a two-dimensional silicon allotrope and an oxidizing agent in an environment having a temperature of greater than or equal to about 25° C. to less than or equal to about 1,000° C., where the contacting of the two-dimensional silicon allotrope and the oxidizing agent causes the two-dimensional silicon allotrope to oxidize and form the two-dimensional silicon oxide negative electroactive material. In certain variations, the oxidizing agent includes oxygen and the contacting of the two-dimensional silicon allotrope and the oxidizing agent may include disposing the two-dimensional silicon allotrope in an oxygen-containing environment comprising less than or equal to about 21% of oxygen. In other variations, the oxidizing agent includes a wet chemical agent.
    Type: Application
    Filed: September 2, 2021
    Publication date: March 2, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Thomas E. MOYLAN, Jeffrey David CAIN
  • Publication number: 20220384774
    Abstract: The present disclosure provides a method for forming a prelithiated, layered anode material. The method includes contacting a precursor material and an electrolyte that includes one or more lithium salts and one or more solvents. The electrolyte may have a molarity greater than or equal to about 0.1 M to less than or equal to a solubility limit of the one or more lithium salts in the one or more solvents. The precursor material may be a three-dimensional layered material and the contacting of the precursor material and the electrolyte causes removal of cations from the precursor material and introduction of lithium ions from the electrolyte into interlayer spaces or voids created by the removal of the cations to form the prelithiated, layered anode material.
    Type: Application
    Filed: June 1, 2021
    Publication date: December 1, 2022
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jeffrey David CAIN, Thomas E. MOYLAN, Paul Taichiang YU, Mark W. VERBRUGGE
  • Publication number: 20220384773
    Abstract: The present disclosure provides a method for forming a layered anode material. The method includes contacting a precursor material and a first electrolyte. The precursor material is a layered ionic compound represented by MX2, where M is one of calcium and magnesium and X is one of silicon, germanium, and boron. The method further includes applying a first bias and/or current as the precursor material contacts the first electrolyte so as to remove cations from the precursor material to create a two-dimensional structure that defines the layered anode material. In certain variations, the method further include contacting the two-dimensional structure and a second electrolyte, and applying a second bias and/or current as the two-dimensional structure contacts the second electrolyte so as to cause lithium ions to move into interlayer spaces or voids created in the two-dimensional structure by the removal of the cations thereby forming the layered anode material.
    Type: Application
    Filed: June 1, 2021
    Publication date: December 1, 2022
    Inventors: Jeffrey David CAIN, Thomas E. MOYLAN, Leng MAO, Paul Taichiang YU, Nicholas Paul William PIECZONKA, Andrew Clay BOBEL
  • Patent number: 11476463
    Abstract: Disclosed herein is a method comprising mixing an electroactive particle with a carbonaceous material to form a particle mixture that comprises a carbon coated particle; subjecting the carbon coated particle to a pulsed voltage between parallel plate electrodes or between rolls of a roll mill; and converting the carbon coated particle to a graphite coated particle via localized Joule heating. Disclosed herein too is an apparatus comprising a mixing device that is operative to mix an electroactive particle with a carbonaceous material to form a particle mixture that comprises a carbon coated particle; and a device for applying a pulsed voltage to the particle mixture; where the applying of the pulsed voltage is conducted when the particle mixture is located between opposing plate electrodes or between opposing rolls of a roll mill; where the device for applying the pulsed voltage converts the carbon coated particle into a graphite coated particle.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: October 18, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jeffrey D. Cain, Thomas E. Moylan, Andrew C. Bobel, Lei Wang
  • Publication number: 20220045326
    Abstract: Disclosed herein is a method comprising mixing an electroactive particle with a carbonaceous material to form a particle mixture that comprises a carbon coated particle; subjecting the carbon coated particle to a pulsed voltage between parallel plate electrodes or between rolls of a roll mill; and converting the carbon coated particle to a graphite coated particle via localized Joule heating. Disclosed herein too is an apparatus comprising a mixing device that is operative to mix an electroactive particle with a carbonaceous material to form a particle mixture that comprises a carbon coated particle; and a device for applying a pulsed voltage to the particle mixture; where the applying of the pulsed voltage is conducted when the particle mixture is located between opposing plate electrodes or between opposing rolls of a roll mill; where the device for applying the pulsed voltage converts the carbon coated particle into a graphite coated particle.
    Type: Application
    Filed: August 7, 2020
    Publication date: February 10, 2022
    Inventors: Jeffrey D. Cain, Thomas E. Moylan, Andrew C. Bobel, Lei Wang