Patents by Inventor Thomas Edward Darcie
Thomas Edward Darcie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7894781Abstract: Multiple-input/multiple-output (MIMO) antenna technology is used in a point-to-point radio link to provide higher data rates than would otherwise be achievable in a similar system that did not use MIMO antenna technology. Particular embodiments of the invention implement channel coding, dual polarization, adaptive receiver combining and adaptive power control.Type: GrantFiled: August 12, 2009Date of Patent: February 22, 2011Assignee: AT&T Intellectual Property II, L.P.Inventors: Martin Vivian Clark, Thomas Edward Darcie, Lawrence Joel Greenstein, Carol Catalano Martin, Thomas M. Willis, III
-
Patent number: 7831147Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.Type: GrantFiled: November 10, 2008Date of Patent: November 9, 2010Assignee: AT&T Intellectual Property II, L.P.Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
-
Patent number: 7783196Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.Type: GrantFiled: October 2, 2007Date of Patent: August 24, 2010Assignee: AT&T Intellectual Property II, L.P.Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
-
Patent number: 7734179Abstract: A communication system between head-ends and end-users is provided which expands bandwidth and reliability. A concentrator receives communication signals from a head-end and forwards the received communication signals to one or more fiber nodes and/or one or more mini-fiber nodes. The concentrator demultiplexes/splits received signals for the mini-fiber nodes and the fiber nodes and forwards demultiplexed/split signals respectively. The mini-fiber nodes may combine signals received from the head-end with loop-back signals used for local medium access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and/or fiber node and transmitted to the concentrator. The concentrator multiplexes/couples the mini-fiber node and the fiber node upstream signals and forwards multiplexed/coupled signals to the head-end.Type: GrantFiled: August 13, 2003Date of Patent: June 8, 2010Assignee: AT&T Corp.Inventors: Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Sheryl Leigh Woodward
-
Patent number: 7620375Abstract: Multiple-input/multiple-output (MIMO) antenna technology is used in a point-to-point radio link to provide higher data rates than would otherwise be achievable in a similar system that did not use MIMO antenna technology. Particular embodiments of the invention implement channel coding, dual polarization, adaptive receiver combining and adaptive power control.Type: GrantFiled: September 28, 2005Date of Patent: November 17, 2009Assignee: AT&T Intellectual Property II, L.P.Inventors: Martin Vivian Clark, Thomas Edward Darcie, Lawrence Joel Greenstein, Carol Catalano Martin, Thomas M. Willis, III
-
Publication number: 20090067841Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.Type: ApplicationFiled: November 10, 2008Publication date: March 12, 2009Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
-
Patent number: 7450850Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.Type: GrantFiled: March 12, 2007Date of Patent: November 11, 2008Assignee: AT&T Corp.Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
-
Patent number: 7283749Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.Type: GrantFiled: June 6, 2006Date of Patent: October 16, 2007Assignee: AT&T Corp.Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
-
Patent number: 7190903Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.Type: GrantFiled: July 31, 2003Date of Patent: March 13, 2007Assignee: AT&T Corp.Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
-
Patent number: 7068937Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.Type: GrantFiled: November 26, 2003Date of Patent: June 27, 2006Assignee: AT&T Corp.Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
-
Patent number: 7006804Abstract: Multiple-input/multiple-output (MIMO) antenna technology is used in a point-to-point radio link to provide higher data rates than would otherwise be achievable in a similar system that did not use MIMO antenna technology. Particular embodiments of the invention implement channel coding, dual polarization, adaptive receiver combining and adaptive power control.Type: GrantFiled: July 10, 2002Date of Patent: February 28, 2006Assignee: AT&T Corp.Inventors: Martin Vivian Clark, Thomas Edward Darcie, Lawrence Joel Greenstein, Carol Catalano Martin, Thomas M. Willis, III
-
Patent number: 6785242Abstract: A monitoring apparatus and method are provided for a communication system in which a central office communicates to at least one end unit using intermediate remote nodes. The remote node receives signals from both the central office and the end units. Each remote node can be equipped with apparatus for monitoring the integrity of paths of the communication system. The monitoring apparatus can include a mixing device that mixes received signals to produce combined signals. The received signals generally include a pilot signal sent from the central office and a data signal sent from the at least one end unit. The state of the communication system is analyzed based on the combined signals. If the combined signals includes only the data signal from the end unit, the path through which the pilot signal was sent is inoperative. If the combined signals includes only the pilot signal, the transmission path from the end unit over which the data signal is sent is inoperative.Type: GrantFiled: July 17, 2001Date of Patent: August 31, 2004Assignee: AT&T Corp.Inventors: Thomas Edward Darcie, Alan H. Gnauck, Xiaolin Lu
-
Patent number: 6751417Abstract: This invention provides a new architecture for a communication system between head-ends and end-users which expands bandwidth and reliability of the communication system. A mux-node receives communication signals from a head-end and forwards the received communication signals to one or more mini-fiber nodes. The connection to the head-end is via a small number of optical fibers and the connections to each of the mini-fiber nodes may be via one or more optical fibers that may provide full duplex communication. The head-end may communicate with the mux-node using digital or digital and analog signals. The mini-fiber nodes may combine the signals received from the head-end with loop-back signals used for local media access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and transmitted to the mux-node.Type: GrantFiled: February 11, 2000Date of Patent: June 15, 2004Assignee: AT&T Corp.Inventors: Charles D. Combs, Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Esteban Sandino, Oleh J. Sniezko, Anthony G. Werner, Sheryl Leigh Woodward
-
Patent number: 6654563Abstract: A communication system between head-ends and end-users is provided which expands bandwidth and reliability. A concentrator receives communication signals from a head-end and forwards the received communication signals to one or more fiber nodes and/or one or more mini-fiber nodes. The concentrator demultiplexes/splits received signals for the mini-fiber nodes and the fiber nodes and forwards demultiplexed/split signals respectively. The mini-fiber nodes may combine signals received from the head-end with loop-back signals used for local medium access control prior to forwarding the signals to the end-users. Upstream data are received by the mini-fiber nodes and/or fiber node and transmitted to the concentrator. The concentrator multiplexes/couples the mini-fiber node and the fiber node upstream signals and forwards multiplexed/coupled signals to the head-end.Type: GrantFiled: December 14, 1999Date of Patent: November 25, 2003Assignee: AT&T Corp.Inventors: Thomas Edward Darcie, Bhavesh N. Desai, Alan H. Gnauck, Xiaolin Lu, Sheryl Leigh Woodward
-
Patent number: 6577714Abstract: A method and system are disclosed for a map-based directory service. Users are presented with a map on a computer screen, the map having symbols indicating real-world locations such as buildings, streets, parks, and bodies of water. A close correspondence exists between the map and the real-world. The map further has symbols indicating virtual locations. A virtual location, as the name implies, refers to a location that appears on the map but is not physically present in the real world. In accordance with the present invention, users can locate listings in conjunction with both real and virtual locations related to such listings, and, can connect to the entities associated with those listings once located.Type: GrantFiled: March 25, 1997Date of Patent: June 10, 2003Assignee: AT&T Corp.Inventors: Thomas Edward Darcie, Peter D. Magill, Norman Ashton Whitaker, Jr.
-
Patent number: 6493335Abstract: A communication network uses intermediate nodes to resolve local traffic contention. Intermediate nodes receive upstream signals from end users, derive traffic information signals from the upstream signals, and transmit the traffic information signals to end users. By listening to the traffic information signals from the intermediate node, the end users know whether the upstream transmission channels are idle or busy, or whether a collision has occurred. The intermediate nodes derive and transmit the traffic information signals with or without the assistance of the central office or head end.Type: GrantFiled: September 24, 1996Date of Patent: December 10, 2002Assignee: AT&T Corp.Inventors: Thomas Edward Darcie, Bhavesh Desai, Alan H. Gnauck, Xiaolin Lu, Sheryl Leigh Woodward
-
Publication number: 20010038611Abstract: A monitoring apparatus and method are provided for a communication system in which a central office communicates to at least one end unit using intermediate remote nodes. The remote node receives signals from both the central office and the end units. Each remote node can be equipped with apparatus for monitoring the integrity of paths of the communication system. The monitoring apparatus can include a mixing device that mixes received signals to produce combined signals. The received signals generally include a pilot signal sent from the central office and a data signal sent from the at least one end unit. The state of the communication system is analyzed based on the combined signals. If the combined signals includes only the data signal from the end unit, the path through which the pilot signal was sent is inoperative. If the combined signals includes only the pilot signal, the transmission path from the end unit over which the data signal is sent is inoperative.Type: ApplicationFiled: July 17, 2001Publication date: November 8, 2001Applicant: AT&T Corp.Inventors: Thomas Edward Darcie, Alan H. Gnauck, Xiaolin Lu
-
Patent number: 6292469Abstract: A monitoring apparatus and method are provided for a communication system in which a central office communicates to at least one end unit using intermediate remote nodes. The remote node receives signals from both the central office and the end units. Each remote node can be equipped with apparatus for monitoring the integrity of paths of the communication system. The monitoring apparatus can include a mixing device that mixes received signals to produce combined signals. The received signals generally include a pilot signal sent from the central office and a data signal sent from the at least one end unit. The state of the communication system is analyzed based on the combined signals. If the combined signals includes only the data signal from the end unit, the path through which the pilot signal was sent is inoperative. If the combined signals includes only the pilot signal, the transmission path from the end unit over which the data signal is sent is inoperative.Type: GrantFiled: September 7, 2000Date of Patent: September 18, 2001Assignee: AT&T CorporationInventors: Thomas Edward Darcie, Alan H. Gnauck, Xiaolin Lu
-
Patent number: 6195362Abstract: This invention provides a method and apparatus for allocating pools of resources of a communication system to nodes and end users serviced by the nodes. The nodes are coupled to a communications network through interface units. The interface units are organized as a pool and may be either preassigned to each of the nodes or may be dynamically allocated to the nodes based on end user requests. All the nodes of the communication system uses a common frequency band. Each of the nodes is coupled to the communication network through a dedicated channel. Thus, bandwidth available to the end users are greatly expanded without expensive and complex upgrades to existing equipment.Type: GrantFiled: November 8, 1996Date of Patent: February 27, 2001Assignee: AT&T CorporationInventors: Thomas Edward Darcie, Alan H. Gnauck, Xiaolin Lu
-
Patent number: 6181453Abstract: A laser bias preconditioning methodology is provided, and an implementation of that methodology, that improves the carrier-to-noise ratio of analog CATV signals sent over an optical transmission medium. The bias preconditioning methodology causes the laser bias current to be continuously varied to track an envelope of the carrier signal.Type: GrantFiled: December 28, 1995Date of Patent: January 30, 2001Assignee: Lucent Technologies, Inc.Inventors: Thomas Edward Darcie, Patrick P. Iannone