Patents by Inventor Thomas Edward Wickert

Thomas Edward Wickert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11136635
    Abstract: An ultrasonic roller burnishing system comprises a roller and a controller. The roller is configured to be pressed against a surface of a workpiece to a pressing depth, roll on the surface at a feed rate, and vibrate at an ultrasonic frequency under a back pressure. The roller is pressed and rolled by a motion unit which is driven by a drive motor. The vibrating of the roller is driven by an ultrasonic vibration unit with an input current inputted thereinto. The controller is configured to adjust at least one of the pressing depth, the back pressure, the input current and the feed rate based on an expected residual compressive stress and a real time output power of the drive motor, to generate a residual compressive stress in the workpiece which is in an expected range predetermined based on the expected residual compressive stress.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: October 5, 2021
    Assignee: General Electric Company
    Inventors: Qing Gao, Yingna Wu, Thomas Edward Wickert, Yingbin Bao
  • Patent number: 10598094
    Abstract: A turbomachine includes a compressor configured to compress air received at an intake portion to form a compressed airflow that exits into an outlet portion. A combustor is operably connected with the compressor, and receives the compressed airflow. A turbine is operably connected with the combustor, and receives the combustion gas flow. The turbine has a plurality of wheels and a plurality of buckets. The turbine receives compressor bleed off air to cool the wheels and buckets. A cooling system is operatively connected to the turbine. The cooling system includes a plurality of heat pipes located axially upstream of at least one of the wheels. The heat pipes are operatively connected to a bearing cooler system. The heat pipes and the bearing cooler system are configured to transfer heat from the compressor bleed off air to one or more heat exchangers.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: March 24, 2020
    Assignee: General Electric Company
    Inventors: Sanji Ekanayake, Thomas Edward Wickert, Alston Ilford Scipio
  • Publication number: 20200048725
    Abstract: An ultrasonic roller burnishing system comprises a roller and a controller. The roller is configured to be pressed against a surface of a workpiece to a pressing depth, roll on the surface at a feed rate, and vibrate at an ultrasonic frequency under a back pressure. The roller is pressed and rolled by a motion unit which is driven by a drive motor. The vibrating of the roller is driven by an ultrasonic vibration unit with an input current inputted thereinto. The controller is configured to adjust at least one of the pressing depth, the back pressure, the input current and the feed rate based on an expected residual compressive stress and a real time output power of the drive motor, to generate a residual compressive stress in the workpiece which is in an expected range predetermined based on the expected residual compressive stress.
    Type: Application
    Filed: April 21, 2017
    Publication date: February 13, 2020
    Inventors: Qing GAO, Yingna WU, Thomas Edward WICKERT, Yingbin BAO
  • Publication number: 20190010868
    Abstract: Embodiments of the disclosure provide a shaft assembly including: a first shaft extending through a compressor and a turbine of the turbomachine; a second shaft coupled to the first shaft through a load coupling component; a generator mounted on the second shaft, wherein the turbine drives the generator; a plurality of mono-type low-loss bearings supporting the first and second shafts at the compressor, turbine, and generator; and a plurality of rotating blade structures within the compressor and the turbine of the turbomachine, wherein at least one of the plurality of rotating blade structures in the compressor includes a low-density material, and at least one of the plurality of rotating blade structures in the turbine includes the low-density material.
    Type: Application
    Filed: September 5, 2018
    Publication date: January 10, 2019
    Inventors: Dwight Eric Davidson, Jeffrey John Butkiewicz, Jeremy Daniel Van Dam, Thomas Edward Wickert
  • Publication number: 20180016985
    Abstract: A turbomachine includes a compressor configured to compress air received at an intake portion to form a compressed airflow that exits into an outlet portion. A combustor is operably connected with the compressor, and receives the compressed airflow. A turbine is operably connected with the combustor, and receives the combustion gas flow. The turbine has a plurality of wheels and a plurality of buckets. The turbine receives compressor bleed off air to cool the wheels and buckets. A cooling system is operatively connected to the turbine. The cooling system includes a plurality of heat pipes located axially upstream of at least one of the wheels. The heat pipes are operatively connected to a bearing cooler system. The heat pipes and the bearing cooler system are configured to transfer heat from the compressor bleed off air to one or more heat exchangers.
    Type: Application
    Filed: April 2, 2015
    Publication date: January 18, 2018
    Inventors: Sanji EKANAYAKE, Thomas Edward WICKERT, Alston Ilford Scipio
  • Patent number: 9797310
    Abstract: A turbomachine includes a compressor having an inter-stage gap between adjacent rows of rotor blades and stator vanes. A combustor is connected to the compressor, and a turbine is connected to the combustor. An intercooler is operatively connected to the compressor, and includes a first plurality of heat pipes that extend into the inter-stage gap. The first plurality of heat pipes are operatively connected to a first manifold, and the heat pipes and the first manifold are configured to transfer heat from the compressed airflow from the compressor to heat exchangers. A cooling system is operatively connected to the turbine, and includes a second plurality of heat pipes located in the turbine nozzles. The second plurality of heat pipes are operatively connected to a second manifold, and the heat pipes and the second manifold are configured to transfer heat from the turbine nozzles to the heat exchangers.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: October 24, 2017
    Assignee: General Electric Company
    Inventors: Sanji Ekanayake, Joseph Paul Rizzo, Alston Ilford Scipio, Timothy Tahteh Yang, Thomas Edward Wickert
  • Publication number: 20160290234
    Abstract: A turbomachine includes a compressor configured to compress air received at an intake portion to form a compressed airflow that exits into an outlet portion. A combustor is operably connected with the compressor, and receives the compressed airflow. A turbine is operably connected with the combustor, and receives combustion gas flow from the combustor. The turbine has a plurality of wheels and a plurality of buckets, and the turbine receives compressor bleed off air to cool at least one of the wheels. A cooling system is operatively connected to the turbine, and includes a plurality of heat pipes attached to or embedded within at least one of the wheels. The compressor bleed off air is configured to impinge onto at least one of the wheels or the heat pipes. The heat pipes and the compressor bleed off air are configured to cool the wheels.
    Type: Application
    Filed: April 2, 2015
    Publication date: October 6, 2016
    Inventors: Sanji Ekanayake, Thomas Edward Wickert, Julio Enrique Mestroni, Alston Ilford Scipio
  • Publication number: 20160290235
    Abstract: A turbomachine includes a compressor, combustor and a turbine. An intercooler is operatively connected to the compressor. The intercooler includes a first plurality of heat pipes that extend into the inter-stage gap of the compressor, and the heat pipes are operatively connected to a first manifold. The heat pipes and the manifold are configured to transfer heat from the compressed airflow to one or more heat exchangers. A first cooling system is operatively connected to the turbine. The first cooling system includes a second plurality of heat pipes attached to or embedded within at least one of the plurality of wheels. The compressor bleed off air is configured to impinge onto at least one of the plurality of wheels or the second plurality of heat pipes. The second plurality of heat pipes and the compressor bleed off air are configured to cool at least one of the plurality of wheels.
    Type: Application
    Filed: April 2, 2015
    Publication date: October 6, 2016
    Inventors: Sanji Ekanayake, Julio Enrique Mestroni, Joseph Paul Rizzo, Alston Ilford Scipio, Timothy Tahteh Yang, Thomas Edward Wickert
  • Publication number: 20160290233
    Abstract: A turbomachine includes a compressor having an inter-stage gap between adjacent rows of rotor blades and stator vanes. A combustor is connected to the compressor, and a turbine is connected to the combustor. An intercooler is operatively connected to the compressor, and includes a first plurality of heat pipes that extend into the inter-stage gap. The first plurality of heat pipes are operatively connected to a first manifold, and the heat pipes and the first manifold are configured to transfer heat from the compressed airflow from the compressor to heat exchangers. A cooling system is operatively connected to the turbine, and includes a second plurality of heat pipes located in the turbine nozzles. The second plurality of heat pipes are operatively connected to a second manifold, and the heat pipes and the second manifold are configured to transfer heat from the turbine nozzles to the heat exchangers.
    Type: Application
    Filed: April 2, 2015
    Publication date: October 6, 2016
    Inventors: Sanji Ekanayake, Joseph Paul Rizzo, Alston Ilford Scipio, Timothy Tahteh Yang, Thomas Edward Wickert
  • Publication number: 20160047303
    Abstract: Power train architectures with mono-type low-loss bearings and low-density materials are disclosed. The gas turbine used in these architectures can include a compressor section, a turbine section, and a combustor section. A generator, coupled to the rotor shaft, is driven by the turbine section. The compressor section, the turbine section, and the generator include rotating components, at least one of the rotating components in one of the compressor section, the turbine section, and the generator including a low-density material. Bearings support the rotor shaft within the compressor section, the turbine section and the generator, wherein at least one of the bearings is a mono-type low-loss bearing.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 18, 2016
    Inventors: Dwight Eric Davidson, Jeffrey John Butkiewicz, Jeremy Daniel Van Dam, Thomas Edward Wickert
  • Publication number: 20160047305
    Abstract: A multi-stage axial compressor arrangement is disclosed that uses a compressor speed reducer to rotate the moving blades in the forward stages of the compressor at a slower rotational speed than the moving blades in the mid stages and the aft stages of the compressor. Slowing the rotational speed of the moving blades in the forward stages in relation to the blades in the mid stages and the aft stages, enables the multi-stage axial compressor to deliver a high airflow rate while overcoming excessive attachment stresses that is typically experienced in the large rotating blades of the forward stages of the compressor.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 18, 2016
    Inventors: Thomas Edward Wickert, Dwight Eric Davidson
  • Publication number: 20150121888
    Abstract: A gas turbine online wash control system may obtain geospatial data for an area in which a gas turbine is located. The gas turbine online wash control system may determine wash control parameters for the gas turbine based on the geospatial data.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 7, 2015
    Applicant: General Electric Company
    Inventors: Sanji Ekanayake, Alston Ilford Scipio, Thomas Edward Wickert, Douglas Frank Beadie, Scott Andrew Childers
  • Patent number: 8984893
    Abstract: A system for augmenting gas turbine power output includes a compressed air supply, and a compressed air storage plenum in fluid communication with the compressed air supply. The compressed air storage plenum is configured to store a compressed air from the compressed air supply for later use. The system further includes an inlet plenum sealingly coupled to an inlet of the gas turbine. The inlet plenum is in fluid communication with the compressed air storage plenum so as to route the compressed air from the compressed air storage plenum into the inlet of the compressor during augmented operation of the gas turbine.
    Type: Grant
    Filed: April 10, 2013
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: Mark Stewart Schroder, Thomas Edward Wickert, Mark Allan Hadley
  • Publication number: 20140305127
    Abstract: A system for augmenting gas turbine power output includes a compressed air supply, and a compressed air storage plenum in fluid communication with the compressed air supply. The compressed air storage plenum is configured to store a compressed air from the compressed air supply for later use. The system further includes an inlet plenum sealingly coupled to an inlet of the gas turbine. The inlet plenum is in fluid communication with the compressed air storage plenum so as to route the compressed air from the compressed air storage plenum into the inlet of the compressor during augmented operation of the gas turbine.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 16, 2014
    Applicant: General Electric Company
    Inventors: Mark Stewart Schroder, Thomas Edward Wickert, Mark Allan Hadley
  • Publication number: 20140174474
    Abstract: A method is provided for washing a compressor in a gas turbine. The method includes establishing a compressor fouling set point and sensing a fouling level in the compressor with a sensor. The fouling level is communicated to a control subsystem that determines a wash initiation instruction based on the fouling level and the compressor fouling set point. The wash initiation instruction is executed by initiating a wash with a fluid. A system is also disclosed including a compressor, an on-line wash system coupled to the compressor, and a compressor fouling sensor that senses a compressor fouling level. A source of washing fluid is provided, and a control subsystem that initiates a wash with washing fluid from the source of washing fluid based on a compressor fouling level.
    Type: Application
    Filed: July 22, 2013
    Publication date: June 26, 2014
    Applicant: General Electric Company
    Inventors: Sanji Ekanayake, Alston Ilford Scipio, Thomas Edward Wickert, Douglas Frank Beadie
  • Patent number: 8047809
    Abstract: A method of assembling a fluid compression system includes coupling at least one first compression apparatus to a first platform. The method also includes coupling at least one drive apparatus to one of the first platform and a second platform. The method further includes coupling the first platform to the second platform. The at least one second compression apparatus is coupled in series flow communication with the at least one first compression apparatus.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: November 1, 2011
    Assignee: General Electric Company
    Inventors: Thomas Edward Wickert, Mark Stewart Schroder
  • Publication number: 20080264061
    Abstract: A method of assembling a fluid compression system includes coupling at least one first compression apparatus to a first platform. The method also includes coupling at least one drive apparatus to one of the first platform and a second platform. The method further includes coupling the first platform to the second platform. The at least one second compression apparatus is coupled in series flow communication with the at least one first compression apparatus.
    Type: Application
    Filed: April 30, 2007
    Publication date: October 30, 2008
    Inventors: Thomas Edward Wickert, Mark Stewart Schroder
  • Patent number: 6794766
    Abstract: A method is provided for controlling variable inlet and stator vanes of a heavy-duty gas turbine electrical power generator compressor component upon occurrence of power grid under-frequency events. Variable inlet guide vanes and the front four variable stator vanes of the compressor are ganged together by means of a common actuation mechanism. Altering the angle of the ganged vanes changes the overall airflow consumption of the compressor and affects the amount of turbine output power produced. Predetermined operational schedules for varying the angular position of the stator vanes in accordance with compressor speed are defined for both nominal and under-frequency operating conditions to ensure optimum compressor efficiency without violating minimum safe compressor surge margin criteria.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: September 21, 2004
    Assignee: General Electric Company
    Inventors: Thomas Edward Wickert, Bryan Edward Sweet
  • Publication number: 20030011199
    Abstract: A method is provided for controlling variable inlet and stator vanes of a heavy-duty gas turbine electrical power generator compressor component upon occurrence of power grid under-frequency events. Variable inlet guide vanes and the front four variable stator vanes of the compressor are ganged together by means of a common actuation mechanism. Altering the angle of the ganged vanes changes the overall airflow consumption of the compressor and affects the amount of turbine output power produced. Predetermined operational schedules for varying the angular position of the stator vanes in accordance with compressor speed are defined for both nominal and under-frequency operating conditions to ensure optimum compressor efficiency without violating minimum safe compressor surge margin criteria.
    Type: Application
    Filed: June 29, 2001
    Publication date: January 16, 2003
    Inventors: Thomas Edward Wickert, Bryan Edward Sweet
  • Patent number: 6352001
    Abstract: The present invention provides a method for calculating flow rate of a fluid using a pressure differential device, based on detected pressure and temperature upstream of and detected pressure adjacent a flow constriction of the pressure differential device, and calibration coefficients calculated from the results of a flow calibration performed on the pressure differential device. By incorporating the results of the flow calibration in the computation, a non-iterative method for obtaining mass flow rate is realized.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: March 5, 2002
    Assignee: General Electric Company
    Inventors: Thomas Edward Wickert, Ravi Rajamani