Patents by Inventor Thomas Flurschuetz

Thomas Flurschuetz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10105553
    Abstract: A method for generating planning data or control data for a radiation treatment, comprising the following steps: acquiring segmented data of an object which contains a treatment volume and a non-treatment volume; modelling at least some or all of the volume or surface of the treatment volume as a source of light or rays exhibiting a predefined or constant initial intensity; modelling the non-treatment volume as comprising volumetric elements or voxels which each exhibit an individually assigned feature or attenuation or transparency value (tmin?t?tmax) for the light or rays which feature is assigned to the light or ray or which attenuation or transparency maintains or reduces the intensity of the light or ray as it passes through the respective volumetric element or voxel, wherein the feature or attenuation or transparency value is individually assigned to each volumetric element or voxel of the non-treatment volume; defining a map surface which surrounds the treatment volume or the object; calculating an acc
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: October 23, 2018
    Inventors: Pascal Bertram, Claus Promberger, Thomas Flurschuetz
  • Publication number: 20160051842
    Abstract: A method for generating planning data or control data for a radiation treatment, comprising the following steps: acquiring segmented data of an object which contains a treatment volume and a non-treatment volume; modelling at least some or all of the volume or surface of the treatment volume as a source of light or rays exhibiting a predefined or constant initial intensity; modelling the non-treatment volume as comprising volumetric elements or voxels which each exhibit an individually assigned feature or attenuation or transparency value (tmin?t?tmax) for the light or rays which feature is assigned to the light or ray or which attenuation or transparency maintains or reduces the intensity of the light or ray as it passes through the respective volumetric element or voxel, wherein the feature or attenuation or transparency value is individually assigned to each volumetric element or voxel of the non-treatment volume; defining a map surface which surrounds the treatment volume or the object; calculating an acc
    Type: Application
    Filed: October 23, 2015
    Publication date: February 25, 2016
    Inventors: Pascal BERTRAM, Claus PROMBERGER, Thomas FLURSCHUETZ
  • Patent number: 9205280
    Abstract: The present invention relates to method for generating planning data or control data for a radiation treatment, comprising the following steps: acquiring segmented data of an object which contains a treatment volume and a non-treatment volume; modelling at least some or all of the volume or surface of the treatment volume as a source of light or rays exhibiting a predefined or constant initial intensity; modelling the non-treatment volume as comprising volumetric elements or voxels which each exhibit an individually assigned feature or attenuation or transparency value (tmin?t?tmax) for the light or rays which feature is assigned to the light or ray or which attenuation or transparency maintains or reduces the intensity of the light or ray as it passes through the respective volumetric element or voxel, wherein the feature or attenuation or transparency value is individually assigned to each volumetric element or voxel of the non-treatment volume; defining a map surface which surrounds the treatment volume or
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: December 8, 2015
    Assignee: Brainlab AG
    Inventors: Pascal Bertram, Claus Promberger, Thomas Flurschuetz
  • Publication number: 20130324785
    Abstract: The present invention relates to method for generating planning data or control data for a radiation treatment, comprising the following steps: acquiring segmented data of an object which contains a treatment volume and a non-treatment volume; modelling at least some or all of the volume or surface of the treatment volume as a source of light or rays exhibiting a predefined or constant initial intensity; modelling the non- treatment volume as comprising volumetric elements or voxels which each exhibit an individually assigned feature or attenuation or transparency value (tmin?t?tmax) for the light or rays which feature is assigned to the light or ray or which attenuation or transparency maintains or reduces the intensity of the light or ray as it passes through the respective volumetric element or voxel, wherein the feature or attenuation or transparency value is individually assigned to each volumetric element or voxel of the non-treatment volume; defining a map surface which surrounds the treatment volume o
    Type: Application
    Filed: May 25, 2011
    Publication date: December 5, 2013
    Applicant: Brainlab AG
    Inventors: Pascal Bertram, Claus Promberger, Thomas Flurschuetz