Patents by Inventor Thomas G. DUSHATINSKI

Thomas G. DUSHATINSKI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250019311
    Abstract: The processes and products described herein optimize transformation of BNNT as-synthesized material into BNNT intermediary materials. Process steps include refining to remove boron particulates, high temperature refining to break bonds between BNNT, h-BN nanocages, h-BN nanosheets and amorphous BN particles, centrifuging and microfluidic separation, and electrophoresis. Resultant BNNT intermediary materials include purified BNNT in solution, BNNT gels, h-BN nanocages, and h-BN nanosheets, gel spun BNNT fibers, hydrophilic defect enhanced BNNT materials, BNNT patterned sheets, and BNNT strands. Applications that will utilize these BNNT precursor feedstock materials include making BNNT based aligned components, thin films, aerogels, thermal conductivity enhancements, structural materials, ceramic, metal, and polymer composites, and removal of PFAS pollutants from water.
    Type: Application
    Filed: October 28, 2022
    Publication date: January 16, 2025
    Inventors: Mohammad H. KIRMANI, Thomas G. DUSHATINSKI, Clay F. HUFF, Kevin C. JORDAN, Eric R. KENNEDY, Lyndsey R. SCAMMELL, Michael W. SMITH, Jonathan C. STEVENS, R. Roy WHITNEY
  • Patent number: 12188536
    Abstract: The structural integrity and viscoelastic performance of boron nitride nanotube (BNNT) materials may be improved through forming a compressed BNNT buckyweave. The BNNT buckyweave may be formed from a BNNT buckypaper having a bulk nanotube alignment (partial alignment) that may be maintained when forming the BNNT buckyweave, and compression may be parallel to and/or perpendicular to the partial alignment. The BNNT material may be viscoelastically-enhanced through, e.g., selection of synthesized BNNT material, impurity removal/reduction, BNNT alignment, isotopically enhancement, and compression relative to alignment. BNNT buckyweave s are introduced. The present approach provides viscoelastic behavior over temperatures from near absolute zero to near 1900 K. The transport of phonons along the BNNT molecules may be enhanced by utilizing isotopically enhanced BNNTs.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: January 7, 2025
    Assignee: BNNT, LLC
    Inventors: R. Roy Whitney, Thomas G. Dushatinski, Thomas W. Henneberg, Kevin C. Jordan, Jonathan C. Stevens, Michael W. Smith, Clay F. Huff, Lyndsey R. Scammell, Alex I Wixtrom
  • Patent number: 11866327
    Abstract: Boron nitride nanotube (BNNT) material can be placed in large volume configurations such as needed for cryopumps, high surface area filters, scaffolding for coatings, transition radiation detectors, neutron detectors, and similar systems where large volumes may range from cubic millimeters to cubic meters and beyond. The technology to secure the BNNT material includes creating a scaffold of a material acceptable to the final system such as stainless steel wires for a cryopump. The BNNTs can be arranged in the scaffold by freeze drying, filtration technologies, conformal surface attachment and BNNT “glue” where the as-synthesized BNNT material has been partially purified or fully purified and dispersed in a dispersant.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: January 9, 2024
    Assignee: BNNT, LLC
    Inventors: Thomas G Dushatinski, Kevin C. Jordan, Michael W. Smith, Jonathan C. Stevens, R. Roy Whitney
  • Publication number: 20230286801
    Abstract: Disclosed herein are processes for purifying as-synthesized boron nitride nanotube (BNNT) material to remove impurities of boron, amorphous boron nitride (a-BN), hexagonal boron nitride (h-BN) nanocages, h-BN nanosheets, and carbon-containing compounds. The processes include heating the BNNT materials at different temperatures in the presence of inert gas and a hydrogen feedstock or in the presence of oxygen.
    Type: Application
    Filed: March 14, 2023
    Publication date: September 14, 2023
    Inventors: Thomas G. DUSHATINSKI, Kevin C. JORDAN, Michael W. SMITH, R. Roy WHITNEY, Jonathan C. STEVENS
  • Patent number: 11697724
    Abstract: Boron nitride nanotube (BNNT)-polymide (PI) and poly-xylene (PX) nano-composites, in the form of thin films, powder, and mats may be useful as layers in electronic circuits, windows, membranes, and coatings. The processes described chemical vapor deposition (CVD) processes for coating the BNNTs with polymeric material, specifically PI and PX. The processes rely on surface adsorption of polymeric material onto BNNTs as to modify their surface properties or create a uniform dispersion of polymer around nanotubes. The resulting functionalized BNNTs have numerous valuable applications.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: July 11, 2023
    Assignee: BNNT, LLC
    Inventors: Thomas G. Dushatinski, Diego Pedrazzoli, R. Roy Whitney
  • Patent number: 11629054
    Abstract: Disclosed herein are processes for purifying as-synthesized boron nitride nanotube (BNNT) material to remove impurities of boron, amorphous boron nitride (a-BN), hexagonal boron nitride (h-BN) nanocages, h-BN nanosheets, and carbon-containing compounds. The processes include heating the BNNT materials at different temperatures in the presence of inert gas and a hydrogen feedstock or in the presence of oxygen.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: April 18, 2023
    Assignee: BNNT, LLC
    Inventors: Thomas G. Dushatinski, Kevin C. Jordan, Michael W. Smith, R. Roy Whitney, Jonathan C. Stevens
  • Publication number: 20220325162
    Abstract: Thermal interface materials may be enhanced through the dispersion of refined boron nitride nanotubes (BNNTs) into a polymer matrix material and one or more microfillers. A refined BNNT material may be formed by reducing free boron particle content from an as-synthesized BNNT material, and in some embodiments reducing h-BN content. Reducing these species improves the thermal conductivity of the BNNTs. Refined BNNTs may be deagglomerated to reduce the size and mass of BNNTs in agglomerations when the deagglomerated BNNT material is dispersed into a target polymer matrix material. The deagglomerated BNNT material may be lyophilized prior to dispersion in the matrix material, to retain the deagglomeration benefit following return to solid state. The surface of the deagglomerated BNNT material may be modified, with one or more functional groups that improve dispersibility and heat transfer in the target polymer matrix material.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 13, 2022
    Inventors: Thomas G. DUSHATINSKI, Thomas W. HENNEBERG, Clay F. HUFF, Kevin C. JORDAN, Jonathan C. STEVENS, Michael W. SMITH, R. Roy WHITNEY, Lyndsey R. SCAMMELL, Alex I. WIXTROM
  • Patent number: 11390787
    Abstract: Thermal interface materials may be enhanced through the dispersion of refined boron nitride nanotubes (BNNTs) into a polymer matrix material and one or more microfillers. A refined BNNT material may be formed by reducing free boron particle content from an as-synthesized BNNT material, and in some embodiments reducing h-BN content. Reducing these species improves the thermal conductivity of the BNNTs. Refined BNNTs may be deagglomerated to reduce the size and mass of BNNTs in agglomerations when the deagglomerated BNNT material is dispersed into a target polymer matrix material. The deagglomerated BNNT material may be lyophilized prior to dispersion in the matrix material, to retain the deagglomeration benefit following return to solid state. The surface of the deagglomerated BNNT material may be modified, with one or more functional groups that improve dispersibility and heat transfer in the target polymer matrix material.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: July 19, 2022
    Assignee: BNNT, LLC
    Inventors: Thomas G. Dushatinski, Thomas W. Henneberg, Clay F. Huff, Kevin C. Jordan, Jonathan C. Stevens, Michael W. Smith, R. Roy Whitney, Lyndsey R. Scammell, Alex I. Wixtrom
  • Patent number: 11362400
    Abstract: Thermoresponsive composite switch (TRCS) membranes for ion batteries include a porous scaffolding providing ion channels and a thermoresponsive polymer coating. Boron nitride nanotube (BNNT)/polymer composite TRCS membrane embodiments are preferable due to unique BNNT properties. A BNNT scaffold coated with one or more polymers may form a composite separator with tunable porosity (porosity level and pore size distribution), composition, wettability, and superior electronic isolation, oxidative/reduction resistance, and mechanical strength. The BNNT/polymer composite TRCS membrane optimizes the performance of ion batteries with tunable separator thicknesses that may be under 5 ???. Nano-scale porosity with thin separator thicknesses improves the charge density of the battery. Nano-scale architecture allows for reversible localized switching on the nano scale, in proximity to thermally stressed ion substrates.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: June 14, 2022
    Assignee: BNNT, LLC
    Inventors: Thomas G. Dushatinski, Gary S. Huvard, R. Roy Whitney, Kevin C. Jordan, Diego Pedrazzoli, Michael W. Smith, Jonathan C. Stevens
  • Publication number: 20220099151
    Abstract: The structural integrity and viscoelastic performance of boron nitride nanotube (BNNT) materials may be improved through forming a compressed BNNT buckyweave. The BNNT buckyweave may be formed from a BNNT buckypaper having a bulk nanotube alignment (partial alignment) that may be maintained when forming the BNNT buckyweave, and compression may be parallel to and/or perpendicular to the partial alignment. The BNNT material may be viscoelastically-enhanced through, e.g., selection of synthesized BNNT material, impurity removal/reduction, BNNT alignment, isotopically enhancement, and compression relative to alignment. BNNT buckyweave s are introduced. The present approach provides viscoelastic behavior over temperatures from near absolute zero to near 1900 K. The transport of phonons along the BNNT molecules may be enhanced by utilizing isotopically enhanced BNNTs.
    Type: Application
    Filed: January 7, 2020
    Publication date: March 31, 2022
    Inventors: R. Roy Whitney, Thomas G. Dushatinski, Thomas W. Henneberg, Kevin C. Jordan, Jonathan C. Stevens, Michael W. Smith, Clay F. Huff, Lyndsey R. Scammell, Alex I Wixtrom
  • Publication number: 20210230397
    Abstract: Boron nitride nanotube (BNNT)—polyimide (PI) and poly-xylene (PX) nano-composites, in the form of thin films, powder, and mats may be useful as layers in electronic circuits, windows, membranes, and coatings. The processes described chemical vapor deposition (CVD) processes for coating the BNNTs with polymeric material, specifically PI and PX. The processes rely on surface adsorption of polymeric material onto BNNTs as to modify their surface properties or create a uniform dispersion of polymer around nonotubes. The resulting functionalized BNNTs have numerous valuable applications.
    Type: Application
    Filed: December 31, 2020
    Publication date: July 29, 2021
    Inventors: Thomas G. DUSHATINSKI, Diego PEDRAZZOLI, R. Roy WHITNEY
  • Publication number: 20210040371
    Abstract: Thermal interface materials may be enhanced through the dispersion of refined boron nitride nanotubes (BNNTs) into a polymer matrix material and one or more microfillers. A refined BNNT material may be formed by reducing free boron particle content from an as-synthesized BNNT material, and in some embodiments reducing h-BN content. Reducing these species improves the thermal conductivity of the BNNTs. Refined BNNTs may be deagglomerated to reduce the size and mass of BNNTs in agglomerations when the deagglomerated BNNT material is dispersed into a target polymer matrix material. The deagglomerated BNNT material may be lyophilized prior to dispersion in the matrix material, to retain the deagglomeration benefit following return to solid state. The surface of the deagglomerated BNNT material may be modified, with one or more functional groups that improve dispersibility and heat transfer in the target polymer matrix material.
    Type: Application
    Filed: October 22, 2020
    Publication date: February 11, 2021
    Inventors: Thomas G. DUSHATINSKI, Thomas W. HENNEBERG, Clay F. HUFF, Kevin C. JORDAN, Jonathan C. STEVENS, Michael W. SMITH, R. Roy WHITNEY, Lyndsey R. SCAMMELL, Alex I. WIXTROM
  • Patent number: 10907032
    Abstract: Boron nitride nanotube (BNNT)-polyimide (PI) and poly-xylene (PX) nano-composites, in the form of thin films, powder, and mats may be useful as layers in electronic circuits, windows, membranes, and coatings. The processes described chemical vapor deposition (CVD) processes for coating the BNNTs with polymeric material, specifically PI and PX. The processes rely on surface adsorption of polymeric material onto BNNTs as to modify their surface properties or create a uniform dispersion of polymer around nanotubes. The resulting functionalized BNNTs have numerous valuable applications.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: February 2, 2021
    Assignee: BNNT, LLC
    Inventors: Thomas G. Dushatinski, Diego Pedrazzoli, R. Roy Whitney
  • Patent number: 10844262
    Abstract: Thermal interface materials may be enhanced through the dispersion of refined boron nitride nanotubes (BNNTs) into a polymer matrix material and one or more microfillers. A refined BNNT material may be formed by reducing free boron particle content from an as-synthesized BNNT material, and in some embodiments reducing h-BN content. Reducing these species improves the thermal conductivity of the BNNTs. Refined BNNTs may be deagglomerated to reduce the size and mass of BNNTs in agglomerations when the deagglomerated BNNT material is dispersed into a target polymer matrix material. The deagglomerated BNNT material may be lyophilized prior to dispersion in the matrix material, to retain the deagglomeration benefit following return to solid state. The surface of the deagglomerated BNNT material may be modified, with one or more functional groups that improve dispersibility and heat transfer in the target polymer matrix material.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: November 24, 2020
    Assignee: BNNT, LLC
    Inventors: Thomas G. Dushatinski, Thomas W. Henneberg, Clay F. Huff, Kevin C. Jordan, Jonathan C. Stevens, Michael W. Smith, R. Roy Whitney, Lyndsey R. Scammell, Alex I. Wixtrom
  • Publication number: 20200283669
    Abstract: Thermal interface materials may be enhanced through the dispersion of refined boron nitride nanotubes (BNNTs) into a polymer matrix material and one or more microfillers. A refined BNNT material may be formed by reducing free boron particle content from an as-synthesized BNNT material, and in some embodiments reducing h-BN content. Reducing these species improves the thermal conductivity of the BNNTs. Refined BNNTs may be deagglomerated to reduce the size and mass of BNNTs in agglomerations when the deagglomerated BNNT material is dispersed into a target polymer matrix material. The deagglomerated BNNT material may be lyophilized prior to dispersion in the matrix material, to retain the deagglomeration benefit following return to solid state. The surface of the deagglomerated BNNT material may be modified, with one or more functional groups that improve dispersibility and heat transfer in the target polymer matrix material.
    Type: Application
    Filed: July 16, 2019
    Publication date: September 10, 2020
    Inventors: Thomas G. DUSHATINSKI, Thomas W. HENNEBERG, Clay F. HUFF, Kevin C. JORDAN, Jonathan C. STEVENS, Michael W. SMITH, R. Roy WHITNEY, Lyndsey R. SCAMMELL, Alex I. WIXTROM
  • Patent number: 10766780
    Abstract: As disclosed herein, the viscoelastic performance of boron nitride nanotube (BNNT) materials may be enhanced and made into useful formats by utilizing purified BNNTs, aligned BNNTs, isotopically enhanced BNNTs, and density controlled BNNT material. Minimizing the amounts of boron particles, a-BN particles, and h-BN nanocages, and optimizing the h-BN nanosheets has the effect of maximizing the amount of BNNT surface area present that may interact with BNNTs themselves and thereby create the nanotube-to-nanotube friction that generates the viscoelastic behavior over temperatures from near absolute zero to near 1900 K. Aligning the BNNT molecular strands with each other within the BNNT material also generates enhanced friction surfaces. The transport of phonons along the BNNT molecules may be further enhanced by utilizing isotopically enhanced BNNTs.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: September 8, 2020
    Assignee: BNNT, LLC
    Inventors: R. Roy Whitney, Thomas G. Dushatinski, Thomas W. Henneberg, Kevin C. Jordan, Diego Pedrazzoli, Jonathan C. Stevens, Michael W. Smith
  • Patent number: 10665447
    Abstract: Transition radiation from nanotubes, nanosheets, and nanoparticles and in particular, boron nitride nanomaterials, can be utilized for the generation of light. Wavelengths of light of interest for microchip lithography, including 13.5 nm (91.8 eV) and 6.7 nm (185 eV), can be generated at useful intensities, by transition radiation light sources. Light useful for monitoring relativistic charged particle beam characteristics such as spatial distribution and intensity can be generated.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: May 26, 2020
    Assignees: BNNT, LLC, Jefferson Science Associates, LLC
    Inventors: Kevin C. Jordan, Thomas G. Dushatinski, Michael W. Smith, Jonathan C. Stevens, R. Roy Whitney
  • Patent number: 10607829
    Abstract: Transition radiation from nanotubes, nanosheets, and nanoparticles and in particular, boron nitride nanomaterials, can be utilized for the generation of light. Wavelengths of light of interest for microchip lithography, including 13.5 nm (91.8 eV) and 6.7 nm (185 eV), can be generated at useful intensities, by transition radiation light sources. Light useful for monitoring relativistic charged particle beam characteristics such as spatial distribution and intensity can be generated.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: March 31, 2020
    Assignee: BNNT, LLC
    Inventors: Kevin C. Jordan, Thomas G. Dushatinski, Michael W. Smith, Jonathan C. Stevens, R. Roy Whitney
  • Publication number: 20200055732
    Abstract: Boron nitride nanotube (BNNT) material can be placed in large volume configurations such as needed for cryopumps, high surface area filters, scaffolding for coatings, transition radiation detectors, neutron detectors, and similar systems where large volumes may range from cubic millimeters to cubic meters and beyond. The technology to secure the BNNT material includes creating a scaffold of a material acceptable to the final system such as stainless steel wires for a cryopump. The BNNTs can be arranged in the scaffold by freeze drying, filtration technologies, conformal surface attachment and BNNT “glue” where the as-synthesized BNNT material has been partially purified or fully purified and dispersed in a dispersant.
    Type: Application
    Filed: November 29, 2017
    Publication date: February 20, 2020
    Inventors: Thomas G. DUSHATINSKI, Kevin C. JORDAN, Michael W. SMITH, Jonathan C. STEVENS, R. Roy WHITNEY
  • Publication number: 20190292052
    Abstract: Disclosed herein are processes for purifying as-synthesized boron nitride nanotube (BNNT) material to remove impurities of boron, amorphous boron nitride (a-BN), hexagonal boron nitride (h-BN) nanocages, h-BN nanosheets, and carbon-containing compounds. The processes include heating the BNNT materials at different temperatures in the presence of inert gas and a hydrogen feedstock or in the presence of oxygen.
    Type: Application
    Filed: November 29, 2017
    Publication date: September 26, 2019
    Inventors: Thomas G. DUSHATINSKI, Kevin C. JORDAN, Michael W. SMITH, R. Roy WHITNEY, Jonathan C. STEVENS