Patents by Inventor Thomas G. Patterson

Thomas G. Patterson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230407417
    Abstract: Compositions and methods are provided for genome modification of a target sequence in the genome of a plant or plant cell, without incorporating a selectable transgene marker. The methods and compositions employ a guide polynucleotide/Cas endonuclease system to provide an effective system for modifying or altering target sites within the genome of a plant, plant cell or seed, without incorporating a selectable transgene marker. Once a genomic target site is identified, a variety of methods can be employed to further modify the target sites such that they contain a variety of polynucleotides of interest. Breeding methods and methods for selecting plants utilizing a guide polynucleotide/Cas endonuclease system are also disclosed. Compositions and methods are also provided for editing a nucleotide sequence in the genome of a cell, without incorporating a selectable transgene marker.
    Type: Application
    Filed: June 29, 2023
    Publication date: December 21, 2023
    Applicant: Corteva Agriscience LLC
    Inventors: ZOE CHRISTINA EHLERT, JOSHUA A. FLOOK, DANIEL GARCIA, DONNA CAROLYNN KNIEVEL, CHERIE OCHSENFELD, THOMAS G. PATTERSON, RYAN PREUSS, SYED MASOOD RIZVI, VAN L. RIPLEY, STEVE ROUNSLEY, SHUNXUE TANG, MUHAMMAD TAHIR, MICHELLE WIGGINS
  • Publication number: 20230380373
    Abstract: Soybean plants producing soybean seeds comprising leghemoglobin are produced by modifying the genome of the soybean plant. Soybean plants, soybean seeds and soy protein compositions comprising leghemoglobin are provided. Soybean plants, soybean seeds and soy protein compositions comprising leghemoglobin and additionally one or more of high oleic acid, low linolenic acid, high protein, low stachyose, low raffinose and low protease inhibitors are provided. Protein compositions comprising leghemoglobin, such as soy isolates and concentrates can be made from the soybean seeds. Additionally, methods for generating and using plants, seeds and protein compositions comprising leghemoglobin are disclosed.
    Type: Application
    Filed: October 22, 2021
    Publication date: November 30, 2023
    Applicant: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventors: HYEON-JE CHO, JOHN D. EVERARD, ANTHONY KINNEY, ZHAN-BIN LIU, KNUT MEYER, THOMAS G. PATTERSON, KEVIN G. RIPP, BO SHEN
  • Publication number: 20230337651
    Abstract: A device, system, and method of controlling pests are disclosed. A pest control device includes a sensor having a sensor cell and a controller. A surface of the sensor cell is coated with an agent that reacts with a targeted biochemical analyte secreted by pests. The controller is coupled to the sensor and is configured to receive sensor data from the sensor cell indicative of a rate of change in sensor mass detected on the surface of the sensor cell, determine whether the rate of change in the sensor mass based on the received sensor data exceeds a predefined threshold rate, and transmit a pest detection alert notification to a server in response to a determination that the rate of change exceeds the predetermined threshold rate.
    Type: Application
    Filed: May 26, 2023
    Publication date: October 26, 2023
    Inventors: Mark W. Beach, Andrey N. Soukhojak, Neil A. Spomer, Shane L. Mangold, Ravi B. Shankar, Sukrit Mukhopadhyay, Jeremy Chris P. Reyes, Bruce A. Jacobs, William L. Winniford, Ronda L. Hamm, Phillip J. Howard, Andrew J. Pasztor, Mary D. Evenson, Thomas G. Patterson, Natalie C. Giampietro
  • Patent number: 11716983
    Abstract: A device, system, and method of controlling pests are disclosed. A pest control device includes a sensor having a sensor cell and a controller. A surface of the sensor cell is coated with an agent that reacts with a targeted biochemical analyte secreted by pests. The controller is coupled to the sensor and is configured to receive sensor data from the sensor cell indicative of a rate of change in sensor mass detected on the surface of the sensor cell, determine whether the rate of change in the sensor mass based on the received sensor data exceeds a predefined threshold rate, and transmit a pest detection alert notification to a server in response to a determination that the rate of change exceeds the predetermined threshold rate.
    Type: Grant
    Filed: April 9, 2021
    Date of Patent: August 8, 2023
    Assignee: CORTEVA AGRISCIENCE LLC
    Inventors: Mark W. Beach, Andrey N Soukhojak, Neil A. Spomer, Shane L. Mangold, Ravi B. Shankar, Sukrit Mukhopadhyay, Jeremy Chris P. Reyes, Bruce A. Jacobs, William L. Winniford, Ronda L. Hamm, Phillip J. Howard, Andrew J. Pasztor, Mary D. Evenson, Thomas G. Patterson, Natalie C. Giampietro
  • Patent number: 11713490
    Abstract: A method for identifying a quantitative trait locus associated with desirable nutritional traits in canola includes: analyzing a population of canola plants or germplasm for desirable nutritional traits; determining the genotype of the canola plants or germplasm using at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111; mapping the canola plants or germplasm for the presence of a quantitative trait locus (QTL) associated with the markers; and associating the QTL with the desirable nutritional trait. An isolated and/or recombinant nucleic acid includes a sequence associated with a quantitative trait locus (QTL), wherein the QTL is associated with a desirable nutritional trait in a canola plant or germplasm and wherein the QTL is further associated with at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111.
    Type: Grant
    Filed: October 6, 2020
    Date of Patent: August 1, 2023
    Assignee: CORTEVA AGRISCIENCE LLC
    Inventors: Shunxue Tang, Van L. Ripley, Thomas G. Patterson, Michelle Wiggins, Joshua A. Flook, Cherie Ochsenfeld, Daniel Garcia, Syed Masood Rizvi, Ryan Preuss, Donna Carolynn Knievel, Zoe Christina Ehlert, Steve Rounsley, Muhammad Tahir
  • Publication number: 20220340923
    Abstract: Soybean plants producing soybean seeds comprising leghemoglobin are produced by modifying the genome of the soybean plant. Soybean plants, soybean seeds and soy protein compositions comprising leghemoglobin are provided. Soybean plants, soybean seeds and soy protein compositions comprising leghemoglobin and additionally one or more of high oleic acid, low linolenic acid, high protein, low stachyose, low raffinose and low protease inhibitors are provided. Protein compositions comprising leghemoglobin, such as soy isolates and concentrates can be made from the soybean seeds. Additionally, methods for generating and using plants, seeds and protein compositions comprising leghemoglobin are disclosed.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 27, 2022
    Applicant: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventors: HYEON-JE CHO, JOHN D EVERARD, ANTHONY J. KINNEY, ZHAN-BIN LIU, KNUT MEYER, THOMAS G PATTERSON, KEVIN G RIPP, BO SHEN
  • Patent number: 11359206
    Abstract: Soybean plants producing soybean seeds comprising leghemoglobin are produced by modifying the genome of the soybean plant. Soybean plants, soybean seeds and soy protein compositions comprising leghemoglobin are provided. Soybean plants, soybean seeds and soy protein compositions comprising leghemoglobin and additionally one or more of high oleic acid, low linolenic acid, high protein, low stachyose, low raffinose and low protease inhibitors are provided. Protein compositions comprising leghemoglobin, such as soy isolates and concentrates can be made from the soybean seeds. Additionally, methods for generating and using plants, seeds and protein compositions comprising leghemoglobin are disclosed.
    Type: Grant
    Filed: December 21, 2021
    Date of Patent: June 14, 2022
    Inventors: Hyeon-Je Cho, John D Everard, Anthony J Kinney, Zhan-Bin Liu, Knut Meyer, Thomas G Patterson, Kevin G Ripp, Bo Shen
  • Publication number: 20220127632
    Abstract: Soybean plants producing soybean seeds comprising leghemoglobin are produced by modifying the genome of the soybean plant. Soybean plants, soybean seeds and soy protein compositions comprising leghemoglobin are provided. Soybean plants, soybean seeds and soy protein compositions comprising leghemoglobin and additionally one or more of high oleic acid, low linolenic acid, high protein, low stachyose, low raffinose and low protease inhibitors are provided. Protein compositions comprising leghemoglobin, such as soy isolates and concentrates can be made from the soybean seeds. Additionally, methods for generating and using plants, seeds and protein compositions comprising leghemoglobin are disclosed.
    Type: Application
    Filed: December 21, 2021
    Publication date: April 28, 2022
    Applicant: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventors: HYEON-JE CHO, JOHN D EVERARD, ANTHONY J KINNEY, ZHAN-BIN LIU, KNUT MEYER, THOMAS G PATTERSON, KEVIN G RIPP, BO SHEN
  • Publication number: 20220127631
    Abstract: Soybean plants producing soybean seeds comprising leghemoglobin are produced by modifying the genome of the soybean plant. Soybean plants, soybean seeds and soy protein compositions comprising leghemoglobin are provided. Soybean plants, soybean seeds and soy protein compositions comprising leghemoglobin and additionally one or more of high oleic acid, low linolenic acid, high protein, low stachyose, low raffinose and low protease inhibitors are provided. Protein compositions comprising leghemoglobin, such as soy isolates and concentrates can be made from the soybean seeds. Additionally, methods for generating and using plants, seeds and protein compositions comprising leghemoglobin are disclosed.
    Type: Application
    Filed: October 22, 2021
    Publication date: April 28, 2022
    Applicant: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventors: HYEON-JE CHO, JOHN D EVERARD, ANTHONY J KINNEY, ZHAN-BIN LIU, KNUT MEYER, THOMAS G PATTERSON, KEVIN G RIPP, BO SHEN
  • Publication number: 20220017975
    Abstract: This disclosure concerns methods and compositions for identifying canola plants that have a low fiber content trait. Some embodiments concern a chromosomal interval and a quantitative trait locus associated with low fiber content in canola plants or germplasm. Some embodiments concern molecular markers to identify, select, and/or construct low fiber content canola plants and germplasm, or to identify and counter-select plants with relatively higher fiber content. This disclosure also concerns canola plants comprising a low fiber content trait that are generated by methods utilizing at least one marker described herein.
    Type: Application
    Filed: December 13, 2019
    Publication date: January 20, 2022
    Applicant: Agrigenetics, Inc.
    Inventors: Ramesh BUYYARAPU, Thomas G. PATTERSON, Ryan L. PREUSS, Siva S. Ammiraju JETTY, Van L. RIPLEY, Syed Masood RIZVI, Steve ROUNSLEY, Muhammad TAHIR
  • Publication number: 20210227818
    Abstract: A device, system, and method of controlling pests are disclosed. A pest control device includes a sensor having a sensor cell and a controller. A surface of the sensor cell is coated with an agent that reacts with a targeted biochemical analyte secreted by pests. The controller is coupled to the sensor and is configured to receive sensor data from the sensor cell indicative of a rate of change in sensor mass detected on the surface of the sensor cell, determine whether the rate of change in the sensor mass based on the received sensor data exceeds a predefined threshold rate, and transmit a pest detection alert notification to a server in response to a determination that the rate of change exceeds the predetermined threshold rate.
    Type: Application
    Filed: April 9, 2021
    Publication date: July 29, 2021
    Inventors: Mark W. Beach, Andrey N. Soukhojak, Neil A. Spomer, Shane L. Mangold, Ravi B. Shankar, Sukrit Mukhopadhyay, Jeremy Chris P. Reyes, Bruce A. Jacobs, William L. Winniford, Ronda L. Hamm, Phillip J. Howard, Andrew J. Pasztor, Mary D. Evenson, Thomas G. Patterson, Natalie C. Giampietro
  • Patent number: 11000024
    Abstract: A device, system, and method of controlling pests are disclosed. A pest control device includes a sensor having a sensor cell and a controller. A surface of the sensor cell is coated with an agent that reacts with a targeted biochemical analyte secreted by pests. The controller is coupled to the sensor and is configured to receive sensor data from the sensor cell indicative of a rate of change in sensor mass detected on the surface of the sensor cell, determine whether the rate of change in the sensor mass based on the received sensor data exceeds a predefined threshold rate, and transmit a pest detection alert notification to a server in response to a determination that the rate of change exceeds the predetermined threshold rate.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: May 11, 2021
    Assignee: Dow AgroSciences LLC
    Inventors: Mark W. Beach, Andrey N. Soukhojak, Neil A. Spomer, Shane L. Mangold, Ravi B. Shankar, Sukrit Mukhopadhyay, Jeremy Chris P. Reyes, Bruce A. Jacobs, William L. Winniford, Ronda L. Hamm, Phillip J. Howard, Andrew J. Pasztor, Jr., Mary D. Evenson, Thomas G. Patterson, Natalie C. Giampietro
  • Publication number: 20210092921
    Abstract: A method for identifying a quantitative trait locus associated with desirable nutritional traits in canola includes: analyzing a population of canola plants or germplasm for desirable nutritional traits; determining the genotype of the canola plants or germplasm using at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111; mapping the canola plants or germplasm for the presence of a quantitative trait locus (QTL) associated with the markers; and associating the QTL with the desirable nutritional trait. An isolated and/or recombinant nucleic acid includes a sequence associated with a quantitative trait locus (QTL), wherein the QTL is associated with a desirable nutritional trait in a canola plant or germplasm and wherein the QTL is further associated with at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111.
    Type: Application
    Filed: October 6, 2020
    Publication date: April 1, 2021
    Applicant: Dow AgroSciences LLC
    Inventors: Shunxue Tang, Van L. Ripley, Thomas G. Patterson, Michelle Wiggins, Joshua A. Flook, Cherie Ochsenfeld, Daniel Garcia, Syed Masood Rizvi, Ryan Preuss, Donna Carolynn Knievel, Zoe Christina Ehlert, Steve Rounsley, Muhammad Tahir
  • Patent number: 10791692
    Abstract: A method for identifying a quantitative trait locus associated with desirable nutritional traits in canola includes: analyzing a population of canola plants or germplasm for desirable nutritional traits; determining the genotype of the canola plants or germplasm using at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111; mapping the canola plants or germplasm for the presence of a quantitative trait locus (QTL) associated with the markers; and associating the QTL with the desirable nutritional trait. An isolated and/or recombinant nucleic acid includes a sequence associated with a quantitative trait locus (QTL), wherein the QTL is associated with a desirable nutritional trait in a canola plant or germplasm and wherein the QTL is further associated with at least one marker selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:111.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: October 6, 2020
    Assignee: Dow AgroSciences LLC
    Inventors: Shunxue Tang, Van L. Ripley, Thomas G. Patterson, Michelle Wiggins, Joshua A. Flook, Cherie Ochsenfeld, Daniel Garcia, Syed Masood Rizvi, Muhammad Tahir, Ryan Preuss, Donna Carolynn Knievel, Steve Rounsley, Zoe Christina Ehlert
  • Patent number: 10709086
    Abstract: The present invention concerns a canola germplasm comprising at least 45% crude protein and not more than 18% acid detergent fiber content on an oil-free, dry matter basis. Certain embodiments further comprise one or more traits selected from the group consisting of reduced polyphenolic content and increased phosphorous content. In particular embodiments, the invention concerns canola plants comprising such germplasm and plant commodity products (e.g., seeds) produced therefrom. Canola plants comprising a germplasm of the invention may exhibit favorable seed composition characteristics that make them particularly valuable as a source for canola meal, and for methods of introducing at least one trait selected from the group consisting of high protein content, low fiber content, reduced polyphenolic content and increased phosphorous content into a canola variety in a seed coat color-independent manner.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: July 14, 2020
    Assignee: Agrigenetics, Inc.
    Inventors: Thomas James Kubik, Gregory R. Gingera, Van Leonard Ripley, Michelle Beaith, Thomas G. Patterson
  • Patent number: 10470399
    Abstract: A canola germplasm confers on a canola seed the traits of high protein content and low fiber content, wherein the canola plant produces a seed having, on average, at least 68% oleic acid (C18:1) and less than 3% linolenic acid (C18:3). The canola seed traits may also include at least 45% crude protein and not more than 18% acid detergent fiber content on an oil-free, dry matter basis. Certain embodiments further comprise one or more traits selected from the group consisting of reduced polyphenolic content and increased phosphorous content. In particular embodiments, the invention concerns canola plants comprising such germplasm and plant commodity products (e.g., seeds) produced therefrom. Canola plants comprising a germplasm of the invention may exhibit favorable seed composition characteristics that make them particularly valuable as a source for canola meal.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: November 12, 2019
    Assignee: Agrigenetics, Inc.
    Inventors: Van L. Ripley, Gregory R. Gingera, Thomas J. Kubik, Michelle E. Beaith, Thomas G. Patterson
  • Publication number: 20190200595
    Abstract: A device, system, and method of controlling pests are disclosed. A pest control device includes a sensor having a sensor cell and a controller. A surface of the sensor cell is coated with an agent that reacts with a targeted biochemical analyte secreted by pests. The controller is coupled to the sensor and is configured to receive sensor data from the sensor cell indicative of a rate of change in sensor mass detected on the surface of the sensor cell, determine whether the rate of change in the sensor mass based on the received sensor data exceeds a predefined threshold rate, and transmit a pest detection alert notification to a server in response to a determination that the rate of change exceeds the predetermined threshold rate.
    Type: Application
    Filed: March 7, 2019
    Publication date: July 4, 2019
    Inventors: Mark W. BEACH, Audrey N. SOUKHOJAK, Neil A. SPOMER, Shane L. MANGOLD, Ravi B. SHANKAR, Sukrit MUKHOPADHYAY, Jeremy Chris P. REYES, Bruce A. JACOBS, William L. WINNIFORD, Ronda L. HAMM, Phillip J. HOWARD, Andrew J. PASZTOR, Jr., Mary D. EVENSON, Thomas G. PATTERSON, Natalie C. GIAMPIETRO
  • Patent number: 10271534
    Abstract: A device, system, and method of controlling pests are disclosed. A pest control device includes a sensor having a sensor cell and a controller. A surface of the sensor cell is coated with an agent that reacts with a targeted biochemical analyte secreted by pests. The controller is coupled to the sensor and is configured to receive sensor data from the sensor cell indicative of a rate of change in sensor mass detected on the surface of the sensor cell, determine whether the rate of change in the sensor mass based on the received sensor data exceeds a predefined threshold rate, and transmit a pest detection alert notification to a server in response to a determination that the rate of change exceeds the predetermined threshold rate.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: April 30, 2019
    Assignee: Dow AgroSciences LLC
    Inventors: Mark W. Beach, Andrey N. Soukhojak, Neil A. Spomer, Shane L. Mangold, Ravi B. Shankar, Sukrit Mukhopadhyay, Jeremy Chris P. Reyes, Bruce A. Jacobs, William L. Winniford, Ronda L. Hamm, Phillip J. Howard, Andrew J. Pasztor, Jr., Mary D. Evenson, Thomas G. Patterson, Natalie C. Giampietro
  • Publication number: 20180332839
    Abstract: A device, system, and method of controlling pests are disclosed. A pest control device includes a sensor having a sensor cell and a controller. A surface of the sensor cell is coated with an agent that reacts with a targeted biochemical analyte secreted by pests. The controller is coupled to the sensor and is configured to receive sensor data from the sensor cell indicative of a rate of change in sensor mass detected on the surface of the sensor cell, determine whether the rate of change in the sensor mass based on the received sensor data exceeds a predefined threshold rate, and transmit a pest detection alert notification to a server in response to a determination that the rate of change exceeds the predetermined threshold rate.
    Type: Application
    Filed: May 21, 2018
    Publication date: November 22, 2018
    Inventors: Mark W. Beach, Andrey N. Soukhojak, Neil A. Spomer, Shane L. Mangold, Ravi B. Shankar, Sukrit Mukhopadhyay, Jeremy Chris P. Reyes, Bruce A. Jacobs, William L. Winniford, Ronda L. Hamm, Phillip J. Howard, Andrew J. Pasztor, Mary D. Evenson, Thomas G. Patterson
  • Patent number: 10051878
    Abstract: The subject invention relates in part to novel steps in canola and other oil seed processing, including milling to achieve a significant particle size reduction, extraction of higher levels of protein from the starting material, the use of presscake as a starting material, and the production of a precipitated protein concentrates containing a nutritionally significant amount of oil. The subject invention also provides optimal pH ranges for extraction and recovery steps in these novel processes. The subject processes can be applied to, and offer similar advantages to, other oilseeds and vegetable matter, such as sunflower seeds and flax seeds. The subject invention also includes novel feed compositions.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: August 21, 2018
    Assignee: Dow AgroSciences LLC
    Inventors: Richard K. Helling, Thomas G. Patterson, Stewart J. Campbell