Patents by Inventor Thomas Gottschall

Thomas Gottschall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230392924
    Abstract: A condenser unit for providing directed lighting of an object to be measured positioned in a measured object position, wherein the condenser unit comprises a light source for emitting a light beam and an optical element having a positive refractive power. The condenser unit further comprises at least one attenuation element arranged in a common optical axis with the light source and the optical element, which attenuation element comprises a location-dependent light intensity attenuation effect for the light beam incident on the attenuation element, more particularly wherein the light intensity attenuation effect declines from the optical axis towards an edge of the attenuation element.
    Type: Application
    Filed: October 26, 2021
    Publication date: December 7, 2023
    Applicant: JENOPTIK Optical Systems GmbH
    Inventors: Andrei TCHERNOOK, Thomas GOTTSCHALL, Frank RICHTER, Ralf HAMBACH, Andre DATHE
  • Patent number: 11579512
    Abstract: A device for generating laser pulses is provided, the device having an optical parametric oscillator converts the laser pulses of a pump laser to laser pulses at a signal wavelength and at an idler wavelength. The optical parametric oscillator has an optical resonator with a non-linear wavelength converter. It is an object of the invention to provide a device that makes efficient generation of synchronous laser pulse trains with two different central wavelengths possible. To this end, the invention proposes that the pump laser is tunable with respect to the pump wavelength and the repetition frequency, wherein the resonator has an optical fibre with a dispersion in the range of 10-100 ps/nm and a length of 10-1000 m. The invention furthermore relates to a method for generating laser pulses using such a device.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: February 14, 2023
    Assignee: Fraunhoefer-Gesellschaft zur Forderung der angewandten nForschung e.V.
    Inventors: Thomas Gottschall, Jens Limpert, Andreas Tünnermann
  • Patent number: 11211762
    Abstract: The invention relates to an apparatus for generating laser pulses. It is an object of the invention to provide a method for generating synchronized laser pulse trains at variable wavelengths (e.g., for coherent Raman spectroscopy/microscopy), wherein the switching time for switching between different wavelengths should be in the sub-?s range. For this purpose the apparatus according to the invention comprises a pump laser (1), which emits pulsed laser radiation at a specified wavelength, an FDML laser (3), which emits continuous wave laser radiation at a cyclically variable wavelength, and a nonlinear conversion medium (4), in which the pulsed laser radiation of the pump laser (1) and the continuous wave laser radiation of the FDML laser (3) are superposed.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: December 28, 2021
    Assignees: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Friedrich-Schiller-Universität Jena, Leibniz-Institut Für Photonische Technologien E.V.
    Inventors: Thomas Gottschall, Jens Limpert, Andreas Tünnermann, Tobias Meyer, Jürgen Popp
  • Publication number: 20210191230
    Abstract: The invention relates to a device (1) for generating laser pulses, comprising a pump laser (1), which emits laser pulses at a pump wavelength (12) with a repetition frequency, wherein the pulse duration of the laser pulses is 0.5-100 ps, and an optical parametric oscillator (3) that converts the laser pulses of the pump laser (1) at least partially to laser pulses at a signal wavelength (10) and at an idler wavelength (11), which differs from the former, wherein the optical parametric oscillator (3) has an optical resonator (20), comprising a non-linear wavelength converter (22), which converts the laser pulses of the pump laser (1) to laser pulses at the signal wavelength (10) and at the idler wavelength (11), and an output coupling element (24), which couples at least some of the radiation out of the optical resonator (20).
    Type: Application
    Filed: February 1, 2017
    Publication date: June 24, 2021
    Applicants: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Friedrich-Schiller-Universität Jena
    Inventors: Thomas Gottschall, Jens Limpert, Andreas Tunnermann
  • Publication number: 20210091527
    Abstract: The invention relates to an apparatus for generating laser pulses. It is an object of the invention to provide a method for generating synchronized laser pulse trains at variable wavelengths (e.g., for coherent Raman spectroscopy/microscopy), wherein the switching time for switching between different wavelengths should be in the sub-?s range. For this purpose the apparatus according to the invention comprises a pump laser (1), which emits pulsed laser radiation at a specified wavelength, an FDML laser (3), which emits continuous wave laser radiation at a cyclically variable wavelength, and a nonlinear conversion medium (4), in which the pulsed laser radiation of the pump laser (1) and the continuous wave laser radiation of the FDML laser (3) are superposed.
    Type: Application
    Filed: July 12, 2018
    Publication date: March 25, 2021
    Applicants: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung E.V., Friedrich-Schiller-Universitat Jena, Leibniz-lnstitut Für Photonische Technologien E.V.
    Inventors: Thomas GOTTSCHALL, Jens LIMPERT, Andreas TÜNNERMANN, Tobias MEYER, Jürgen POPP
  • Patent number: 9880446
    Abstract: The invention relates to an apparatus (1) for producing short synchronous radiation pulses at different wavelengths, particularly to an optically parametric oscillator, comprising at least one pump radiation source (2), preferably a pump laser, for outputting radiation at a pump wavelength, and a resonator (3) having a wavelength-dependent effective resonator length, wherein the resonator (3) has a non-linear wavelength converter (4) for producing radiation at a first and a second wavelength; a dispersive element (5) having a strong wavelength-dependent delay characteristic; and a coupling-out element (6) for at least partially coupling-out the radiation from the resonator (3). In addition, the invention relates to a method for producing short radiation pulses by means of an apparatus (1), particularly an optically parametric oscillator.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: January 30, 2018
    Assignees: FRIEDRICH-SCHILLER-UNIVERSITAT JENA, FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: Thomas Gottschall, Jens Limpert, Andreas Tunnermann, Martin Baumgartl
  • Publication number: 20160320687
    Abstract: The invention relates to an apparatus (1) for producing short synchronous radiation pulses at different wavelengths, particularly to an optically parametric oscillator, comprising at least one pump radiation source (2), preferably a pump laser, for outputting radiation at a pump wavelength, and a resonator (3) having a wavelength-dependent effective resonator length, wherein the resonator (3) has a non-linear wavelength converter (4) for producing radiation at a first and a second wavelength; a dispersive element (5) having a strong wavelength-dependent delay characteristic; and a coupling-out element (6) for at least partially coupling-out the radiation from the resonator (3). In addition, the invention relates to a method for producing short radiation pulses by means of an apparatus (1), particularly an optically parametric oscillator.
    Type: Application
    Filed: October 28, 2014
    Publication date: November 3, 2016
    Applicants: Fraunhofer-Gesellschaft zur Forderung der angewand ten Forschung e.V., Friedrich-Schiller-Universitat Jena
    Inventors: Thomas Gottschall, Jens Limpert, Andreas Tunnermann, Martin Baumgartl