Patents by Inventor Thomas Gubler

Thomas Gubler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11375116
    Abstract: Stabilizing an image capture device includes stabilizing the image capture device as the image capture device captures images; responsive to detecting an exceptional activity, stopping the stabilizing of the image capture device; and after the exceptional activity is completed, stabilizing the image capture device again. An image stabilization device for stabilizing an imaging device includes a processor that is configured to set at least one of a pitch angle or a roll angle of the image stabilization device to respective constant values and allow a yaw angle of the image stabilization device to vary; while the yaw angle is less than a threshold angle, maintain the yaw angle at a constant relative to a reference platform; when the yaw angle reaches the threshold angle, stop keeping the yaw angle relative to a reference platform constant; and set the yaw angle to follow a direction of motion of the reference platform.
    Type: Grant
    Filed: April 15, 2021
    Date of Patent: June 28, 2022
    Assignee: GoPro, Inc.
    Inventors: Pascal Gohl, Thomas Gubler, Axel Murguet, Garance Bruneau
  • Patent number: 11242953
    Abstract: The disclosure describes systems and methods for calibrating an image stabilization mechanism. One method includes a control system sending a command to thermally condition one or more sensors to a predetermined temperature. During thermal conditioning to the predetermined temperature, the control system sends a command to drive one or more motors of the image stabilization mechanism to cause movement of an imaging device coupled to the image stabilization mechanism. After thermal conditioning to the predetermined temperature, the control system sends a command to stop driving the one or more motors of the image stabilization mechanism to stop movement of the imaging device coupled to the image stabilization mechanism. After stopping the driving of the one or more motors, the control system sends a command to calibrate the one or more sensors.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: February 8, 2022
    Assignee: GoPro, Inc.
    Inventors: Thomas Gubler, Pascal Gohl
  • Publication number: 20210235002
    Abstract: Stabilizing an image capture device includes stabilizing the image capture device as the image capture device captures images; responsive to detecting an exceptional activity, stopping the stabilizing of the image capture device; and after the exceptional activity is completed, stabilizing the image capture device again. An image stabilization device for stabilizing an imaging device includes a processor that is configured to set at least one of a pitch angle or a roll angle of the image stabilization device to respective constant values and allow a yaw angle of the image stabilization device to vary; while the yaw angle is less than a threshold angle, maintain the yaw angle at a constant relative to a reference platform; when the yaw angle reaches the threshold angle, stop keeping the yaw angle relative to a reference platform constant; and set the yaw angle to follow a direction of motion of the reference platform.
    Type: Application
    Filed: April 15, 2021
    Publication date: July 29, 2021
    Inventors: Pascal Gohl, Thomas Gubler, Axel Murguet, Garance Bruneau
  • Patent number: 10992866
    Abstract: A method for stabilizing an imaging device with an image stabilization device includes setting a setpoint of the imaging device to a default setpoint, the setpoint corresponds to an orientation of the imaging device; stabilizing the imaging device with the image stabilization device according to the default setpoint; determining whether a flip condition exists; in response to determining that the flip condition exists, stopping operation of the image stabilization device so that the default setpoint is no longer maintained and the imaging device is not stabilized; and in response to determining that the flip condition does not exist, maintaining the default setpoint to stabilize the imaging device.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: April 27, 2021
    Assignee: GoPro, Inc.
    Inventors: Pascal Gohl, Thomas Gubler, Axel Murguet, Garance Bruneau
  • Patent number: 10666868
    Abstract: An aerial vehicle platform includes an aerial vehicle, a gimbal coupled to the aerial vehicle, and a camera mounted to the gimbal. An attitude sensing system includes an inertial measurement unit to sense attitude and an attitude adjustment module to generate an attitude adjustment for adjusting the sensed attitude to compensate for drift error.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: May 26, 2020
    Assignee: GoPro, Inc.
    Inventors: Thomas Gubler, Garance Bruneau, Axel Murguet, Pascal Gohl
  • Publication number: 20200084359
    Abstract: A method for stabilizing an imaging device with an image stabilization device includes setting a setpoint of the imaging device to a default setpoint, the setpoint corresponds to an orientation of the imaging device; stabilizing the imaging device with the image stabilization device according to the default setpoint; determining whether a flip condition exists; in response to determining that the flip condition exists, stopping operation of the image stabilization device so that the default setpoint is no longer maintained and the imaging device is not stabilized; and in response to determining that the flip condition does not exist, maintaining the default setpoint to stabilize the imaging device.
    Type: Application
    Filed: November 5, 2019
    Publication date: March 12, 2020
    Inventors: Pascal Gohl, Thomas Gubler, Axel Murguet, Garance Bruneau
  • Publication number: 20200063913
    Abstract: The disclosure describes systems and methods for calibrating an image stabilization mechanism. One method includes a control system sending a command to thermally condition one or more sensors to a predetermined temperature. During thermal conditioning to the predetermined temperature, the control system sends a command to drive one or more motors of the image stabilization mechanism to cause movement of an imaging device coupled to the image stabilization mechanism. After thermal conditioning to the predetermined temperature, the control system sends a command to stop driving the one or more motors of the image stabilization mechanism to stop movement of the imaging device coupled to the image stabilization mechanism. After stopping the driving of the one or more motors, the control system sends a command to calibrate the one or more sensors.
    Type: Application
    Filed: November 4, 2019
    Publication date: February 27, 2020
    Inventors: Thomas Gubler, Pascal Gohl
  • Patent number: 10498964
    Abstract: The disclosure describes systems and methods for stabilizing an imaging device with an image stabilization device. The image stabilization device includes sensors, one or more arms, one or more motors, and a control unit. The sensors provide sensor data including orientation data, angular velocity data, and acceleration data. Each of the motors is associated with a respective arm. The control unit is configured to set a setpoint of the imaging device to a default setpoint, receive sensor data from the sensors, determine whether a flip condition exists, in response to determining that the flip condition exists, fix the setpoint of the imaging device, and in response to determining that the flip condition does not exists, maintain the default setpoint of the imaging device by moving at least one of respective arms with one of the respective motors.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: December 3, 2019
    Assignee: GoPro, Inc.
    Inventors: Pascal Gohl, Thomas Gubler, Axel Murguet, Garance Bruneau
  • Publication number: 20190364212
    Abstract: An aerial vehicle platform includes an aerial vehicle, a gimbal coupled to the aerial vehicle, and a camera mounted to the gimbal. An attitude sensing system includes an inertial measurement unit to sense attitude and an attitude adjustment module to generate an attitude adjustment for adjusting the sensed attitude to compensate for drift error.
    Type: Application
    Filed: June 12, 2019
    Publication date: November 28, 2019
    Inventors: Thomas Gubler, Garance Bruneau, Axel Murguet, Pascal Gohl
  • Patent number: 10465840
    Abstract: The disclosure describes systems and methods for calibrating an image stabilization mechanism. One method includes a control system sending a command to thermally condition one or more sensors to a predetermined temperature. During thermal conditioning to the predetermined temperature, the control system sends a command to drive one or more motors of the image stabilization mechanism to cause movement of an imaging device coupled to the image stabilization mechanism. After thermal conditioning to the predetermined temperature, the control system sends a command to stop driving the one or more motors of the image stabilization mechanism to stop movement of the imaging device coupled to the image stabilization mechanism. After stopping the driving of the one or more motors, the control system sends a command to calibrate the one or more sensors.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: November 5, 2019
    Assignee: GoPro, Inc.
    Inventors: Thomas Gubler, Pascal Gohl
  • Patent number: 10362228
    Abstract: An aerial vehicle platform includes an aerial vehicle, a gimbal coupled to the aerial vehicle, and a camera mounted to the gimbal. An attitude sensing system includes an inertial measurement unit to sense attitude and an attitude adjustment module to generate an attitude adjustment for adjusting the sensed attitude to compensate for drift error.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: July 23, 2019
    Assignee: GoPro, Inc.
    Inventors: Thomas Gubler, Garance Bruneau, Axel Murguet, Pascal Gohl
  • Publication number: 20190208101
    Abstract: The disclosure describes systems and methods for stabilizing an imaging device with an image stabilization device. The image stabilization device includes sensors, one or more arms, one or more motors, and a control unit. The sensors provide sensor data including orientation data, angular velocity data, and acceleration data. Each of the motors is associated with a respective arm. The control unit is configured to set a setpoint of the imaging device to a default setpoint, receive sensor data from the sensors, determine whether a flip condition exists, in response to determining that the flip condition exists, fix the setpoint of the imaging device, and in response to determining that the flip condition does not exists, maintain the default setpoint of the imaging device by moving at least one of respective arms with one of the respective motors.
    Type: Application
    Filed: December 28, 2017
    Publication date: July 4, 2019
    Inventors: Pascal Gohl, Thomas Gubler, Axel Murguet, Garance Bruneau
  • Publication number: 20180274720
    Abstract: The disclosure describes systems and methods for calibrating an image stabilization mechanism. One method includes a control system sending a command to thermally condition one or more sensors to a predetermined temperature. During thermal conditioning to the predetermined temperature, the control system sends a command to drive one or more motors of the image stabilization mechanism to cause movement of an imaging device coupled to the image stabilization mechanism. After thermal conditioning to the predetermined temperature, the control system sends a command to stop driving the one or more motors of the image stabilization mechanism to stop movement of the imaging device coupled to the image stabilization mechanism. After stopping the driving of the one or more motors, the control system sends a command to calibrate the one or more sensors.
    Type: Application
    Filed: March 13, 2018
    Publication date: September 27, 2018
    Inventors: Thomas Gubler, Pascal Gohl
  • Patent number: 9963243
    Abstract: The disclosure describes systems and methods for detecting an aerial vehicle landing. One method includes performing at least two of a plurality of landing tests to detect the landing of the aerial vehicle. The plurality of landing tests include a static test, a thrust test, and a shock test. Upon a detection of the landing by one of the at least two landing tests performed, the method further includes performing a free-fall test to detect a free fall of the aerial vehicle. The free fall of the aerial vehicle is a change in altitude of the aerial vehicle above an altitude change threshold. Upon a lack of a detection of the free fall by the free-fall test, the method includes setting a landed state for the aerial vehicle. Upon a detection of the free fall by the free-fall test, the method includes setting an in-air state for the aerial vehicle.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: May 8, 2018
    Assignee: GoPro, Inc.
    Inventors: Lukas Schmid, Jean-Bernard Berteaux, Fabio Diem, Sammy Omari, Thomas Gubler
  • Publication number: 20180115716
    Abstract: An aerial vehicle platform includes an aerial vehicle, a gimbal coupled to the aerial vehicle, and a camera mounted to the gimbal. An attitude sensing system includes an inertial measurement unit to sense attitude and an attitude adjustment module to generate an attitude adjustment for adjusting the sensed attitude to compensate for drift error.
    Type: Application
    Filed: October 19, 2017
    Publication date: April 26, 2018
    Inventors: Thomas Gubler, Garance Bruneau, Axel Murguet, Pascal Gohl
  • Publication number: 20180113462
    Abstract: An electronic gimbal is attached to a mounting platform and enables a mounted device such as a camera to rotate about three axes of rotation. The electronic gimbal may be configured with “soft stop” positions, past which the gimbal adjusts the target rotation to slow the rate of rotation as the motor approach mechanical stops.
    Type: Application
    Filed: October 20, 2017
    Publication date: April 26, 2018
    Inventors: Adam Misrack Fenn, Pascal Gohl, Thomas Gubler, Sammy Omari, Nenad Uzunovic
  • Publication number: 20180105285
    Abstract: The disclosure describes systems and methods for detecting an aerial vehicle landing. One method includes performing at least two of a plurality of landing tests to detect the landing of the aerial vehicle. The plurality of landing tests include a static test, a thrust test, and a shock test. Upon a detection of the landing by one of the at least two landing tests performed, the method further includes performing a free-fall test to detect a free fall of the aerial vehicle. The free fall of the aerial vehicle is a change in altitude of the aerial vehicle above an altitude change threshold. Upon a lack of a detection of the free fall by the free-fall test, the method includes setting a landed state for the aerial vehicle. Upon a detection of the free fall by the free-fall test, the method includes setting an in-air state for the aerial vehicle.
    Type: Application
    Filed: October 19, 2016
    Publication date: April 19, 2018
    Inventors: Lukas Schmid, Jean-Bernard Berteaux, Fabio Diem, Sammy Omari, Thomas Gubler