Patents by Inventor Thomas Gutt

Thomas Gutt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10347490
    Abstract: Production of an integrated circuit including an electrical contact on SiC is disclosed. One embodiment provides for production of an electrical contact on an SiC substrate, in which a conductive contact is produced on a boundary surface of the SiC substrate by irradiation and absorption of a laser pulse on an SiC substrate.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: July 9, 2019
    Assignee: Infineon Technologies Austria AG
    Inventors: Roland Rupp, Thomas Gutt, Michael Treu
  • Publication number: 20170200610
    Abstract: Production of an integrated circuit including an electrical contact on SiC is disclosed. One embodiment provides for production of an electrical contact on an SiC substrate, in which a conductive contact is produced on a boundary surface of the SiC substrate by irradiation and absorption of a laser pulse on an SiC substrate.
    Type: Application
    Filed: February 27, 2017
    Publication date: July 13, 2017
    Applicant: Infineon Technologies Austria AG
    Inventors: Roland Rupp, Thomas Gutt, Michael Treu
  • Patent number: 9634108
    Abstract: A method of manufacturing a device comprises depositing one or more metallization layers to a substrate, locally heating an area of the one or more metallization layers to obtain a substrate/metallization-layer compound or a metallization-layer compound, the compound comprising an etch-selectivity toward an etching medium which is different to that of the one or more metallization layers outside the area, and removing the one or more metallization layers in the area or outside the area, depending on the etching selectivity in the area or outside the area, by etching with the etching medium to form the device.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: April 25, 2017
    Assignee: Infineon Technologies AG
    Inventors: Roland Rupp, Stefan Woehlert, Thomas Gutt, Michael Treu
  • Patent number: 9613805
    Abstract: A method for forming a semiconductor device comprises forming an amorphous or polycrystalline semiconductor layer adjacently to at least one semiconductor doping region having a first conductivity type located in a semiconductor substrate. The method further comprises incorporating dopants into the amorphous or polycrystalline semiconductor layer during or after forming the amorphous or polycrystalline semiconductor layer. The method further comprises annealing the amorphous or polycrystalline semiconductor layer to transform at least a part of the amorphous or polycrystalline semiconductor layer into a substantially monocrystalline semiconductor layer and to form at least one doping region having the second conductivity type in the monocrystalline semiconductor layer, such that a p-n junction is formed between the at least one semiconductor doping region having the first conductivity type and the at least one doping region having the second conductivity type.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: April 4, 2017
    Assignee: Infineon Technologies AG
    Inventors: Werner Schustereder, Holger Schulze, Johannes Laven, Roman Baburske, Rudolf Berger, Thomas Gutt
  • Patent number: 9391154
    Abstract: A method of manufacturing a device comprises depositing one or more metallization layers to a substrate, locally heating an area of the one or more metallization layers to obtain a substrate/metallization-layer compound or a metallization-layer compound, the compound comprising an etch-selectivity toward an etching medium which is different to that of the one or more metallization layers outside the area, and removing the one or more metallization layers in the area or outside the area, depending on the etching selectivity in the area or outside the area, by etching with the etching medium to form the device.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: July 12, 2016
    Assignee: Infineon Technologies AG
    Inventors: Roland Rupp, Stefan Woehlert, Thomas Gutt, Michael Treu
  • Publication number: 20160155861
    Abstract: A method of manufacturing a device comprises depositing one or more metallization layers to a substrate, locally heating an area of the one or more metallization layers to obtain a substrate/metallization-layer compound or a metallization-layer compound, the compound comprising an etch-selectivity toward an etching medium which is different to that of the one or more metallization layers outside the area, and removing the one or more metallization layers in the area or outside the area, depending on the etching selectivity in the area or outside the area, by etching with the etching medium to form the device.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 2, 2016
    Inventors: Roland Rupp, Stefan Woehlert, Thomas Gutt, Michael Treu
  • Publication number: 20160064504
    Abstract: A method of manufacturing a device comprises depositing one or more metallization layers to a substrate, locally heating an area of the one or more metallization layers to obtain a substrate/metallization-layer compound or a metallization-layer compound, the compound comprising an etch-selectivity toward an etching medium which is different to that of the one or more metallization layers outside the area, and removing the one or more metallization layers in the area or outside the area, depending on the etching selectivity in the area or outside the area, by etching with the etching medium to form the device.
    Type: Application
    Filed: November 6, 2015
    Publication date: March 3, 2016
    Inventors: Roland Rupp, Stefan Woehlert, Thomas Gutt, Michael Treu
  • Patent number: 9240450
    Abstract: A semiconductor device includes a semiconductor body including a drift zone of a first conductivity type, an emitter region of a second, complementary conductivity type configured to inject charge carriers into the drift zone, and an emitter electrode. The emitter electrode includes a metal silicide layer in direct ohmic contact with the emitter region. A net impurity concentration in a portion of the emitter region directly adjoining the metal silicide layer is at most 1×1017 cm?3.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: January 19, 2016
    Assignee: Infineon Technologies AG
    Inventors: Dorothea Werber, Volodymyr Komarnitskyy, Thomas Gutt
  • Patent number: 9209281
    Abstract: A method of manufacturing a device comprises depositing one or more metallization layers to a substrate, locally heating an area of the one or more metallization layers to obtain a substrate/metallization-layer compound or a metallization-layer compound, the compound comprising an etch-selectivity toward an etching medium which is different to that of the one or more metallization layers outside the area, and removing the one or more metallization layers in the area or outside the area, depending on the etching selectivity in the area or outside the area, by etching with the etching medium to form the device.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: December 8, 2015
    Assignee: Infineon Technologies AG
    Inventors: Roland Rupp, Stefan Woehlert, Thomas Gutt, Michael Treu
  • Patent number: 9209109
    Abstract: An IGBT includes a semiconductor portion with IGBT cells. Each IGBT cell includes a source zone of a first conductivity type, a body zone of a second, complementary conductivity type, and a drift zone of the first conductivity type separated from the source zone by the body zone. An emitter electrode includes a main layer and an interface layer. The interface layer directly adjoins at least one of the body zone and a supplementary zone of the second conductivity type. A contact resistance between the semiconductor portion and the interface layer is higher than between the semiconductor portion and a material of the main layer. For example, the interface layer may reduce diode emitter efficiency and reverse recovery losses in IGBTs.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: December 8, 2015
    Assignee: Infineon Technologies AG
    Inventors: Dorothea Werber, Thomas Gutt, Mathias Plappert, Frank Pfirsch
  • Publication number: 20150228723
    Abstract: A semiconductor device includes a semiconductor body including a drift zone of a first conductivity type, an emitter region of a second, complementary conductivity type configured to inject charge carriers into the drift zone, and an emitter electrode. The emitter electrode includes a metal silicide layer in direct ohmic contact with the emitter region. A net impurity concentration in a portion of the emitter region directly adjoining the metal silicide layer is at most 1×1017 cm?3.
    Type: Application
    Filed: February 12, 2014
    Publication date: August 13, 2015
    Inventors: Dorothea Werber, Volodymyr Komarnitskyy, Thomas Gutt
  • Publication number: 20150041831
    Abstract: Production of an integrated circuit including an electrical contact on SiC is disclosed. One embodiment provides for production of an electrical contact on an SiC substrate, in which a conductive contact is produced on a boundary surface of the SiC substrate by irradiation and absorption of a laser pulse on an SiC substrate.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Inventors: Roland Rupp, Thomas Gutt, Michael Treu
  • Publication number: 20150014743
    Abstract: An IGBT includes a semiconductor portion with IGBT cells. Each IGBT cell includes a source zone of a first conductivity type, a body zone of a second, complementary conductivity type, and a drift zone of the first conductivity type separated from the source zone by the body zone. An emitter electrode includes a main layer and an interface layer. The interface layer directly adjoins at least one of the body zone and a supplementary zone of the second conductivity type. A contact resistance between the semiconductor portion and the interface layer is higher than between the semiconductor portion and a material of the main layer. For example, the interface layer may reduce diode emitter efficiency and reverse recovery losses in IGBTs.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 15, 2015
    Inventors: Dorothea Werber, Thomas Gutt, Mathias Plappert, Frank Pfirsch
  • Patent number: 8895422
    Abstract: Production of an integrated circuit including an electrical contact on SiC is disclosed. One embodiment provides for production of an electrical contact on an SiC substrate, in which a conductive contact is produced on a boundary surface of the SiC substrate by irradiation and absorption of a laser pulse on an SiC substrate.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 25, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Roland Rupp, Thomas Gutt, Michael Treu
  • Patent number: 8541892
    Abstract: A bonding connection between a bonding wire and a power semiconductor chip is disclosed. The power semiconductor chip has a semiconductor body arranged in which is an active cell region with a multiplicity of cells arranged one following the other in a lateral direction and connected electrically in parallel. The semiconductor body has a surface portion arranged above the active cell region in a vertical direction perpendicular to the lateral direction. Applied to the surface portion is a metallization layer onto which a bonding wire is bonded. The bonding wire comprises an alloy containing at least 99% by weight aluminum and at least one further alloying constituent. The aluminum has a grain structure with a mean grain size which is less than 2 ?m.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: September 24, 2013
    Assignee: Infineon Technologies AG
    Inventors: Dirk Siepe, Thomas Gutt, Roman Roth
  • Patent number: 8475326
    Abstract: An outer plate carrier, including a cup-shaped embodied carrier plate (110) comprising a cylinder-shell shaped cylindrical section (130) and a circular-disk shaped bottom section (120). The bottom section (120) of the carrier plate (110) carries a cup-shaped hub section (140), arranged centrally. The cup-shaped hub section includes a cylindrical-shell shaped hub jacket (160) and a circular-disk shaped hub bottom (150). The hub bottom (150) has a smaller diameter than the bottom section (120) of the carrier plate (110). The hub bottom (150) is continuous and embodied in one piece with the carrier plate (110).
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: July 2, 2013
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Oliver Noehl, Michael Schlosser, Thomas Gutt, Frank Feurer
  • Patent number: 8450196
    Abstract: Production of an integrated circuit including an electrical contact on SiC is disclosed. One embodiment provides for production of an electrical contact on an SiC substrate, in which a conductive contact is produced on a boundary surface of the SiC substrate by irradiation and absorption of a laser pulse on an SiC substrate.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: May 28, 2013
    Assignee: Infineon Technologies Austria AG
    Inventors: Roland Rupp, Thomas Gutt, Michael Treu
  • Publication number: 20120267211
    Abstract: An outer plate carrier, including a cup-shaped embodied carrier plate (110) comprising a cylinder-shell shaped cylindrical section (130) and a circular-disk shaped bottom section (120). The bottom section (120) of the carrier plate (110) carries a cup-shaped hub section (140), arranged centrally. The cup-shaped hub section includes a cylindrical-shell shaped hub jacket (160) and a circular-disk shaped hub bottom (150). The hub bottom (150) has a smaller diameter than the bottom section (120) of the carrier plate (110). The hub bottom (150) is continuous and embodied in one piece with the carrier plate (110).
    Type: Application
    Filed: June 14, 2012
    Publication date: October 25, 2012
    Applicant: SCHAEFFLER TECHNOLOGIES AG & CO. KG
    Inventors: Oliver Noehl, Michael Schlosser, Thomas Gutt, Frank Feurer
  • Patent number: 8011319
    Abstract: A holding device is presented in which a layer which is to be oxidized is processed, in a single-substrate process. The process temperature during the processing is recorded directly at the substrate or at a holding device for the substrate. The process includes introducing a substrate, which bears a layer to be oxidized uncovered in an edge region in a layer stack, into a heating device, passing an oxidation gas onto the substrate, heating the substrate to a process temperature, which is recorded during the processing via a temperature of the holding device which holds the substrate, and controlling the substrate temperature to a desired temperature or temperature curve during the processing.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: September 6, 2011
    Assignee: Infineon Technologies AG
    Inventors: Hin-Yiu Chung, Thomas Gutt
  • Publication number: 20110121458
    Abstract: A bonding connection between a bonding wire and a power semiconductor chip is disclosed. The power semiconductor chip has a semiconductor body arranged in which is an active cell region with a multiplicity of cells arranged one following the other in a lateral direction and connected electrically in parallel. The semiconductor body has a surface portion arranged above the active cell region in a vertical direction perpendicular to the lateral direction. Applied to the surface portion is a metallization layer onto which a bonding wire is bonded. The bonding wire comprises an alloy containing at least 99% by weight aluminium and at least one further alloying constituent. The aluminum has a grain structure with a mean grain size which is less than 2 ?m.
    Type: Application
    Filed: September 23, 2010
    Publication date: May 26, 2011
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Dirk Siepe, Thomas Gutt, Roman Roth