Patents by Inventor Thomas H. Bradley

Thomas H. Bradley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11794757
    Abstract: Embodiments described herein improve fuel economy by controlling a vehicle powertrain based on a predicted vehicle velocity. The vehicle velocity is predicted based on vehicle-to-vehicle data when a prediction horizon is a longer prediction horizon and the vehicle velocity is predicted based on historical drive cycle data when the prediction horizon is a shorter prediction horizon. A time duration of the shorter prediction horizon is shorter than the time duration of the longer prediction horizon. A plurality of drive cycles are established for both the longer and the shorter prediction horizons using a neural network. A shorter prediction horizon drive cycle uses nonlinear autoregressive exogenous model neural networks and the longer prediction horizon drive cycle uses two layer feedforward neural networks. The predicted vehicle velocity is determined from a similar drive cycle of the plurality of drive cycles of either the shorter and/or the longer prediction horizon drive cycles.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: October 24, 2023
    Assignee: Colorado State University Research Foundation
    Inventors: Zachary Asher, David Baker, Thomas H. Bradley
  • Publication number: 20190375421
    Abstract: Embodiments described herein improve fuel economy by controlling a vehicle powertrain based on a predicted vehicle velocity. The vehicle velocity is predicted based on vehicle-to-vehicle data when a prediction horizon is a longer prediction horizon and the vehicle velocity is predicted based on historical drive cycle data when the prediction horizon is a shorter prediction horizon. A time duration of the shorter prediction horizon is shorter than the time duration of the longer prediction horizon. A plurality of drive cycles are established for both the longer and the shorter prediction horizons using a neural network. A shorter prediction horizon drive cycle uses nonlinear autoregressive exogenous model neural networks and the longer prediction horizon drive cycle uses two layer feedforward neural networks. The predicted vehicle velocity is determined from a similar drive cycle of the plurality of drive cycles of either the shorter and/or the longer prediction horizon drive cycles.
    Type: Application
    Filed: January 14, 2019
    Publication date: December 12, 2019
    Applicant: Colorado State University Research Foundation
    Inventors: Zachary Asher, David Baker, Thomas H. Bradley