Patents by Inventor Thomas H. Dozier

Thomas H. Dozier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020145032
    Abstract: Interconnection elements for electronic components, exhibiting desirable mechanical characteristic (such as resiliency, for making pressure contacts) are formed by using a shaping tool (512) to shape an elongate core element (502) of a soft material (such as gold or soft copper wire) to have a springable shape (including cantilever beam, S-shape, U-shape), and overcoating the shaped core element with a hard material (such as nickel and its alloys), to impart to desired spring (resilient) characteristic to the resulting composite interconnection element. A final overcoat of a material having superior electrical qualities (e.g., electrical conductivity and/or solderability) may be applied to the composite interconnection element.
    Type: Application
    Filed: December 29, 2000
    Publication date: October 10, 2002
    Applicant: FORMFACTOR INC
    Inventors: Igor Y. Khandros, Thomas H. Dozier, Gary W. Grube, Gaetan L. Mathieu
  • Patent number: 6442831
    Abstract: Interconnection elements for electronic components, exhibiting desirable mechanical characteristics (such as resiliency, for making pressure contacts) are formed by using a shaping tool (512) to shape an elongate core element (502) of a soft material (such as gold or soft copper wire) to have a springable shape (including cantilever beam, S-shape, U-shape), and overcoating the shaped core element with a hard material (such as nickel and its alloys), to impart a desired spring (resilient) characteristic to the resulting composite interconnection element. A final overcoat of a material having superior electrical qualities (e.g., electrical conductivity and/or solderability) may be applied to the composite interconnection element.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: September 3, 2002
    Assignee: FormFactor, Inc.
    Inventors: Igor Y. Khandros, Thomas H. Dozier, Gary W. Grube, Gaetan L. Mathieu
  • Publication number: 20010038030
    Abstract: Interconnection elements for electronic components, exhibiting desirable mechanical characteristic (such as resiliency, for making pressure contacts) are formed by using a shaping tool (512) to shape an elongate core element (502) of a soft material (such as gold or soft copper wire) to have a springable shape (including cantilever beam, S-shape, U-shape), and overcoating the shaped core element with a hard material (such as nickel and its alloys), to impart to desired spring (resilient) characteristic to the resulting composite interconnection element. A final overcoat of a material having superior electrical qualities (e.g., electrical conductivity and/or solderability) may be applied to the composite interconnection element.
    Type: Application
    Filed: December 29, 2000
    Publication date: November 8, 2001
    Applicant: FORMFACTOR, NC.
    Inventors: Igor Y. Khandros, Thomas H. Dozier, Gary W. Grube, Gaetan L. Mathieu
  • Publication number: 20010009724
    Abstract: Deposition of metal in a preferred shape, including coatings on parts, or stand-alone materials, and subsequent heat treatment to provide improved mechanical properties. In particular, the method gives products with relatively high yield strength. The products often have relatively high elastic modulus, and are thermally stable, maintaining the high yield strength at temperatures considerably above 25° C. This technique involves depositing a material in the presence of a selected additive, and then subjecting the deposited material to a moderate heat treatment. This moderate heat treatment differs from other commonly employed “stress relief” heat treatments in using lower temperatures and/or shorter times, preferably just enough to reorganize the material to the new, desired form. Coating and heat treating a spring-shaped substrate provides a resilient, conductive contact useful for electronic applications.
    Type: Application
    Filed: January 29, 2001
    Publication date: July 26, 2001
    Inventors: Jimmy Kuo-Wei Chen, Benjamin N. Eldridge, Thomas H. Dozier, Junjye J. Yeh, Gayle J. Herman
  • Patent number: 6232149
    Abstract: Temporary connections to spring contact elements extending from an electronic component such as a semiconductor device are made by urging the electronic component, consequently the ends of the spring contact elements, vertically against terminals of an interconnection substrate, or by horizontally urging terminals of an interconnection substrate against end portions of the spring contact elements. A variety of terminal configurations are disclosed.
    Type: Grant
    Filed: March 7, 2000
    Date of Patent: May 15, 2001
    Assignee: FormFactor, Inc.
    Inventors: Thomas H. Dozier, II, Benjamin N. Eldridge, Gary W. Grube, Igor Y. Khandros, Gaetan L. Mathieu, David V. Pedersen, Michael A. Stadt
  • Patent number: 6150186
    Abstract: Deposition of metal in a preferred shape, including coatings on parts, or stand-alone materials, and subsequent heat treatment to provide improved mechanical properties. In particular, the method gives products with relatively high yield strength. The products often have relatively high elastic modulus, and are thermally stable, maintaining the high yield strength at temperatures considerably above 25.degree. C. This technique involves depositing a material in the presence of a selected additive, and then subjecting the deposited material to a moderate heat treatment. This moderate heat treatment differs from other commonly employed "stress relief" heat treatments in using lower temperatures and/or shorter times, preferably just enough to reorganize the material to the new, desired form. Coating a shape and heat treating provides a shaped deposit with improved material properties.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: November 21, 2000
    Assignee: FormFactor, Inc.
    Inventors: Jimmy Kuo-Wei Chen, Benjamin N. Eldridge, Thomas H. Dozier, Junjye J. Yeh, Gayle J. Herman
  • Patent number: 6033935
    Abstract: Temporary connections to spring contact elements extending from an electronic component such as a semiconductor device are made by urging the electronic component, consequently the ends of the spring contact elements, vertically against terminals of an interconnection substrate, or by horizontally urging terminals of an interconnection substrate against end portions of the spring contact elements. A variety of terminal configurations are disclosed.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: March 7, 2000
    Assignee: FormFactor, Inc.
    Inventors: Thomas H. Dozier, II, Benjamin N. Eldridge, Gary W. Grube, Igor Y. Khandros, Gaetan L. Mathieu, David V. Pedersen, Michael A. Stadt
  • Patent number: 5820014
    Abstract: Method and apparatus for forming solder balls on electronic components and for forming solder joints between electronic components is described. A preform is fabricated having relatively large cross-section solder masses connected to one another by relatively small cross-section solder bridges. Upon reheating (reflow heating), the solder bridges melt first, and become subsumed into the solder masses. In instances where the preform is placed on a surface of an electronic component and reflowed, the solder masses become solder balls on pads of the electronic component. In instances where the preform is placed between two electronic components and reflowed, the solder masses become solder joints connecting the two electronic components. The preform may be prefabricated with a carrier, for later application to or between electronic components, and may be used to form solder balls on one or more unsingulated semiconductor dies on a semiconductor wafer.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: October 13, 1998
    Assignee: Form Factor, Inc.
    Inventors: Thomas H. Dozier, II, Igor Y. Khandros
  • Patent number: 5806181
    Abstract: The invention relates to making temporary, pressure connections between electronic components and, more particularly, to techniques for performing test and burn-in procedures on semiconductor devices prior to their packaging, preferably prior to the individual semiconductor devices being singulated from a semiconductor wafer.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: September 15, 1998
    Assignee: FormFactor, Inc.
    Inventors: Igor Y. Khandros, Benjamin N. Eldridge, Gaetan L. Mathieu, Thomas H. Dozier, William D. Smith
  • Patent number: 5772451
    Abstract: Surface-mount, solder-down sockets permit electronic components such as semiconductor packages to be releasably mounted to a circuit board. Resilient contact structures extend from a top surface of a support substrate, and solder-ball (or other suitable) contact structures are disposed on a bottom surface of the support substrate. Composite interconnection elements are used as the resilient contact structures disposed atop the support substrate. In any suitable manner, selected ones of the resilient contact structures atop the support substrate are connected, via the support substrate, to corresponding ones of the contact structures on the bottom surface of the support substrate. In an embodiment intended to receive a LGA-type semiconductor package, pressure contact is made between the resilient contact structures and external connection points of the semiconductor package with a contact force which is generally normal to the top surface of the support substrate.
    Type: Grant
    Filed: October 18, 1995
    Date of Patent: June 30, 1998
    Assignee: Form Factor, Inc.
    Inventors: Thomas H. Dozier, II, Benjamin N. Eldridge, Gary W. Grube, Igor Y. Khandros, Gaetan L. Mathieu
  • Patent number: 5473510
    Abstract: An electrical assembly 100 is provided which includes a land grid array integrated circuit package 103, a socket 104, a printed circuit board 106 and a clamping lid 101. Socket 104 and clamping lid 101 have major surface dimensions no greater than the major surface dimensions of the LGA integrated circuit package 103 in order to limit board space requirements to the minimum required by the circuit package 103. Alignment means associated with integrated circuit package 103, socket 104 and printed circuit board 106 are provided to maintain alignment between contact pads 120 on circuit package 103 and first ends of compressible conductors 111 on socket 104 and between contact pads 122 on circuit board 106 and second ends of compressible conductors 111. In the completed assembly, clamping lid 101 applies pressure to an adjacent surface of integrated circuit package 103 thereby compressing compressible conductors 111 against contact pads 120 and contact pads 122.
    Type: Grant
    Filed: March 25, 1994
    Date of Patent: December 5, 1995
    Assignee: Convex Computer Corporation
    Inventor: Thomas H. Dozier, II