Patents by Inventor Thomas H. Linz

Thomas H. Linz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230348959
    Abstract: Methods discussed herein are directed to polymerase chain reaction (PCR) techniques, and more specifically quantitative-discrete PCR, wherein individual amplification reactions are performed on a per-payload basis among singly-captured and singly-isolated vesicles, for instance within individually sealed microwell reactors. These techniques enable post-process quality control measurements of per-vesicular manufacture loading efficiency and encapsulation efficiency of nucleic acid active ingredients in vesicular biologics, employing quantitative-discrete PCR techniques. By measuring variability of vesicular encapsulation of nucleic acids at a per-vesicular manufacture level of granularity, such techniques can enable collection of data that may be used to perform post-process formulation upon vesicular biologics, and to yield more homogenous formulations from both synthetic and biogenesis pathways.
    Type: Application
    Filed: April 27, 2023
    Publication date: November 2, 2023
    Applicant: Wayne State University
    Inventor: Thomas H. Linz
  • Publication number: 20230314370
    Abstract: Described herein are systems using injectionless gel electrophoresis (GE), such as thermal GE (TGE), to selectively separate, concentrate, quantify, and/or otherwise analyze target analytes. Inline preconcentration and separation are demonstrated to resolve analytes, exemplified by resolving double-stranded miRNA-probe hybrids from excess single-stranded probes and analyzing multiple conformations of a protein. Microfluidic devices having a tapered channel are described, which improve detection sensitivity and separation resolution. The described separation strategy and microfluidic device designs establish injectionless gel electrophoresis as a simple, low-cost analysis method, for instance for analyzing clinical and pharmaceutical samples, including for miRNA, protein, and other biomolecular analyses.
    Type: Application
    Filed: February 7, 2023
    Publication date: October 5, 2023
    Applicant: Wayne State University
    Inventors: Thomas H. Linz, Mario A. Cornejo