Patents by Inventor Thomas H. Madden
Thomas H. Madden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230253677Abstract: Disclosed herein are polymer conductive films for use with electrochemical devices. An exemplary electrochemical device can include an anode, a cathode, and a bipolar structure disposed between the anode and cathode. The bipolar structure includes a film having a plurality of conductive particles and a plurality of non-conductive polymers, wherein the polymers are integrated with the particles such that the film is non-porous and substantially compositionally homogeneous along a length and/or thickness of the film.Type: ApplicationFiled: April 18, 2023Publication date: August 10, 2023Inventors: Thomas H. Madden, Daryl Ludlow, Karl Oleson, Honorio Valdes-Espinosa, Jian He, XiouRui Hou, David Hurt, Jay Dandrea
-
Publication number: 20230076847Abstract: The present inventions are directed to fluid flow assemblies, and systems incorporating such assemblies, each assembly comprising a conductive element disposed within a non-conductive element; the non-conductive element being characterized as framing the conductive central element and the elements together defining a substantially planar surface when engaged with one another; each of the conductive and non-conductive elements comprising channels which, when taken together, form a flow pattern on the substantially planar surface; and wherein the channels are restricted, terminated, or both restricted and terminated in the non-conductive element.Type: ApplicationFiled: September 6, 2022Publication date: March 9, 2023Inventors: Curtis WARRINGTON, Oleg GREBENYUK, Paravastu BADRINARAYANAN, Thomas H. MADDEN
-
Publication number: 20220238906Abstract: A bipolar aqueous intercalation battery (AIB) is disclosed herein. The AIB can comprise an anode, a cathode, a separator disposed between the anode and the cathode, a frame surrounding the anode, the cathode and the separator, and bipolar layers including a first bipolar layer at a first side of the frame and a second bipolar layer at a second side of the frame opposite the first side. The first bipolar layer and the second bipolar layer each abut the frame, such that the frame, the first bipolar layer and the second bipolar layer together are configured to contain an electrolytic fluid and form a water-tight seal around the anode, the cathode, and the separator.Type: ApplicationFiled: January 28, 2022Publication date: July 28, 2022Inventors: Thomas H. Madden, Karl Oleson, Honorio Valdes-Espinosa, David Hurt, Jian He, Xiaorui Hou
-
Patent number: 11165085Abstract: Flow batteries can be constructed by combining multiple electrochemical unit cells together with one another in a cell stack. High-throughput processes for fabricating electrochemical unit cells can include providing materials from rolled sources for forming a soft goods assembly and a hard goods assembly, supplying the materials to a production line, and forming an electrochemical unit cell having a bipolar plate disposed on opposite sides of a separator. The electrochemical unit cells can have configurations such that bipolar plates are shared between adjacent electrochemical unit cells in a cell stack, or such that bipolar plates between adjacent electrochemical unit cells are abutted together with one another in a cell stack.Type: GrantFiled: June 25, 2019Date of Patent: November 2, 2021Assignee: Lockheed Martin Energy, LLCInventors: Curtis Warrington, Thomas H. Madden, Srivatsava Puranam
-
Publication number: 20210151725Abstract: Disclosed herein are polymer conductive films for use with electrochemical devices. An exemplary electrochemical device can include an anode, a cathode, and a bipolar structure disposed between the anode and cathode. The bipolar structure includes a film having a plurality of conductive particles and a plurality of non-conductive polymers, wherein the polymers are integrated with the particles such that the film is non-porous and substantially compositionally homogeneous along a length and/or thickness of the film.Type: ApplicationFiled: November 13, 2020Publication date: May 20, 2021Inventors: Thomas H. Madden, Daryl Ludlow, Karl Oleson, Honorio Valdes-Espinosa, Jian He, XiouRui Hou, David Hurt, Jay Dandrea
-
Patent number: 11005113Abstract: Solids can sometimes form in one or more electrolyte solutions during operation of flow batteries and related electrochemical systems. Over time, the solids can accumulate and compromise the integrity of flow pathways and other various flow battery components. Flow batteries configured for mitigating solids therein can include an autonomous solids separator, such as a lamella clarifier. Such flow batteries can include a first half-cell containing a first electrolyte solution, a second half-cell containing a second electrolyte solution, a first flow loop configured to circulate the first electrolyte solution through the first half-cell, a second flow loop configured to circulate the second electrolyte solution through the second half-cell, and at least one lamella clarifier in fluid communication with at least one of the first half-cell and the second half-cell. A hydrocyclone can be used as an alternative to a lamella clarifier in some instances.Type: GrantFiled: August 18, 2016Date of Patent: May 11, 2021Assignee: LOCKHEED MARTIN ENERGY, LLCInventors: John Goeltz, Thomas H. Madden
-
Publication number: 20210013552Abstract: A bipolar battery stack incorporating aqueous intercalation battery (AIB) materials is described. The bipolar AIB battery stack can include anode layers made from anode intercalation materials, The disclosed bipolar AIB stack can provide low impedance, rapid manufacturing, and low materials costs. Due to the inherently safe nature of the AIB materials, the requirements for heat removal are significantly relaxed and no requirements exist for cell bypass, Accordingly, the disclosed bipolar AIB stack configuration provides a durable and cost-effective energy storage battery for many renewable applications.Type: ApplicationFiled: November 14, 2019Publication date: January 14, 2021Inventor: Thomas H. Madden
-
Patent number: 10651489Abstract: This invention is directed to aqueous redox flow batteries comprising ionically charged redox active materials and separators, wherein the separator is about 100 microns or less and the flow battery is capable of (a) operating with a current efficiency of at least 85% with a current density of at least about 100 mA/cm2; (b) operating with a round trip voltage efficiency of at least 60% with a current density of at least about 100 mA/cm2; and/or (c) giving rise to diffusion rates through the separator for the first active material, the second active material, or both, of about 1×10?7 mol/cm2-sec or less.Type: GrantFiled: May 25, 2016Date of Patent: May 12, 2020Assignee: Lockheed Martin Energy, LLCInventors: Arthur J. Esswein, Steven Y. Reece, Thomas H. Madden, Thomas D. Jarvi, John Goeltz, Desiree Amadeo, Evan R. King, Nitin Tyagi
-
Patent number: 10651484Abstract: Fuel cell reactant flow field plates (22, 32) are formed by extruding long sections (17, 25) of carbonaceous material, either with straight grooves (18, 28) formed by the extrusion die, or by end milling or arbor milling, and then cut to a proper size, including cuts in which the edges of the plates are at an angle with respect to the grooves. Cooler plates are formed of water-permeable material (39) in which hydrophobic material (40) is impregnated so as to define coolant channels (42-44) with inlets and outlets (47, 49). A two-layer cooler plate is formed by stamping voids in one layer (51) that define coolant flow channels (52) with inlets (54) and outlets (56) while a second layer (59) is stamped with voids (61, 62) that define coolant inlet and exit headers; juxtaposition of the layers, with or without bonding, form the cooler plate. A cooler plate (65) is made by corrugating thin metal sheet, providing coolant channels (68) for cathodes and coolant channels (73) for anodes when interposed therebetween.Type: GrantFiled: October 19, 2012Date of Patent: May 12, 2020Assignee: AUDI AGInventors: Timothy W. Patterson, Jr., Thomas H. Madden, Robert M. Darling, Glenn M. Allen
-
Patent number: 10593978Abstract: A membrane electrode assembly includes an anode, a cathode, a membrane disposed between the anode and the cathode, a catalyzed layer in at least one position selected from the group consisting of between the cathode and the membrane and between the anode and the membrane, and an edge seal positioned along an edge of the membrane electrode assembly, wherein the membrane and the catalyzed layer extends into the edge seal.Type: GrantFiled: December 28, 2004Date of Patent: March 17, 2020Assignee: AUDI AGInventors: Ned E. Cipollini, David A. Condit, Sergei F. Burlatsky, Thomas H. Madden, Wayde R. Schmidt
-
Publication number: 20190319292Abstract: Flow batteries can be constructed by combining multiple electrochemical unit cells together with one another in a cell stack. High-throughput processes for fabricating electrochemical unit cells can include providing materials from rolled sources for forming a soft goods assembly and a hard goods assembly, supplying the materials to a production line, and forming an electrochemical unit cell having a bipolar plate disposed on opposite sides of a separator. The electrochemical unit cells can have configurations such that bipolar plates are shared between adjacent electrochemical unit cells in a cell stack, or such that bipolar plates between adjacent electrochemical unit cells are abutted together with one another in a cell stack.Type: ApplicationFiled: June 25, 2019Publication date: October 17, 2019Inventors: Curtis Warrington, Thomas H. Madden, Srivatsava Puranam
-
Patent number: 10446860Abstract: A method of manufacturing a plate for a fuel cell includes the steps of providing flow channels in a fuel cell plate. Multiple fuel cell plates are joined into a cell stack assembly. A blocking plate is affixed to the fuel cell plate and at least partially obstructs the flow channels. The blocking plate is affixed to the fuel cell plate after the plates have been arranged into the cell stack assembly. The resulting fuel cell provides a fuel cell plate having a perimeter with an edge. The fuel cell plate includes flow channels extending to the edge. The blocking plate is affixed to the fuel cell plate at the edge to at least partially block the flow channel. In this manner, an inexpensive fuel cell plate may be used, and the blocking plate can be configured to create terminated flow channels, which may be used to provide an interdigitated flow field.Type: GrantFiled: June 23, 2011Date of Patent: October 15, 2019Assignee: AUDI AGInventors: Thomas H. Madden, Timothy W. Patterson
-
Patent number: 10439232Abstract: A method of manufacturing a porous structure for a fuel cell is disclosed. The method includes providing the porous structure, and processing the porous structure to selectively produce a non-porous region on the porous structure. In one example, the non-porous region is provided at the perimeter of the porous structure, an edge of an internal manifold and/or a surface or recess that supports a seal or gasket. The non-porous region has a porosity that is less than the porosity of the porous structure. The non-porous region prevents undesired leakage of fluid from the porous structure and prevents migration of adhesive associated with the seals.Type: GrantFiled: April 6, 2009Date of Patent: October 8, 2019Assignee: AUDI AGInventors: Stephen P. Victor, Thomas H. Madden, David A. Niezelski, Kristoffer Ridgeway
-
Patent number: 10403911Abstract: Electrochemical cells, such as those present within flow batteries, can have an electrode and a bipolar plate in at least one half-cell interfacially bonded together with an electrically conductive adhesive. Bonding the bipolar plate to the electrode can decrease contact resistance and sometimes lessen the incidence of parasitic reactions in the electrochemical cell. Flow batteries containing these features can include: a first half-cell containing a first electrode in interfacial contact with a first bipolar plate, a second half-cell containing a second electrode in interfacial contact with a second bipolar plate, and a separator disposed between the first half-cell and the second half-cell. An electrically conductive adhesive interfacially bonds at least one of the first electrode to the first bipolar plate and the second electrode to the second bipolar plate. Each electrode maintains fluid communication with its corresponding bipolar plate.Type: GrantFiled: October 7, 2016Date of Patent: September 3, 2019Assignee: Lockheed Martin Energy, LLCInventors: Srivatsava Venkataranga Puranam, Timothy B. Grejtak, Jeremy Loretz, Thomas H. Madden, Joseph Johannes Henricus Pijpers, Helen Elizabeth Vanbenschoten, Curtis Warrington
-
Patent number: 10381674Abstract: Flow batteries can be constructed by combining multiple electrochemical unit cells together with one another in a cell stack. High-throughput processes for fabricating electrochemical unit cells can include providing materials from rolled sources for forming a soft goods assembly and a hard goods assembly, supplying the materials to a production line, and forming an electrochemical unit cell having a bipolar plate disposed on opposite sides of a separator. The electrochemical unit cells can have configurations such that bipolar plates are shared between adjacent electrochemical unit cells in a cell stack, or such that bipolar plates between adjacent electrochemical unit cells are abutted together with one another in a cell stack.Type: GrantFiled: April 7, 2016Date of Patent: August 13, 2019Assignee: Lockheed Martin Energy, LLCInventors: Curtis Warrington, Thomas H. Madden, Srivatsava Puranam
-
Publication number: 20190021436Abstract: It is desired to teach an open footwear article where the upper surface contacting the foot is partially combined with, or wholly comprised of, a substantially rigid material that has some degree of open porosity. The purpose of said rigid, porous material serves to immediately absorb perspiration and/or water from the feet. Subsequent drying of the porous, rigid material occurs when the sandal is not in use as water/perspiration are evaporated from within the pores. The porous, rigid material also effects a massaging action while walking. It is the intent of this invention to capture a preferred combination of these two embodiments.Type: ApplicationFiled: July 21, 2017Publication date: January 24, 2019Inventor: Thomas H. Madden
-
Patent number: 10147957Abstract: Electrochemical cells can include flow channels designed to provide an electrolyte solution more efficiently to an electrode or ionically conductive separator. Such electrochemical cells can include an ionically conductive separator disposed between a first half-cell and a second half-cell, a first bipolar plate in the first half-cell, and a second bipolar plate in the second half-cell. At least one of the first bipolar plate and the second bipolar plate are a composite containing a conductive material and a blocking material. The blocking material defines a plurality of flow channels that are spaced apart from one another and extend laterally through the composite with respect to the ionically conductive separator. The plurality of flow channels are also in fluid communication with one another in the composite. Such electrochemical cells can be incorporated in electrochemical stacks and/or be fluidly connected to a fluid inlet manifold and a fluid outlet manifold.Type: GrantFiled: April 7, 2016Date of Patent: December 4, 2018Assignee: Lockheed Martin Energy, LLCInventors: Thomas H. Madden, Paravastu Badrinarayanan, Curtis Warrington, Srivatsava Puranam
-
Patent number: 9997794Abstract: A membrane electrode assembly is provided which includes an anode; a cathode; a membrane between the anode and the cathode; and a protective layer between the membrane and at least one electrode of the anode and the cathode, the protective layer having a layer of ionomer material containing a catalyst, the layer having a porosity of between 0 and 10%, an ionomer content of between 50 and 80% vol., a catalyst content of between 10 and 50% vol., and an electrical connectivity between catalyst particles of between 35 and 75%. A configuration using a precipitation layer to prevent migration of catalyst ions is also provided.Type: GrantFiled: April 1, 2015Date of Patent: June 12, 2018Assignee: Audi AGInventors: Sergei F. Burlatsky, Ned E. Cipollini, David A. Condit, Thomas H. Madden, Sathya Motupally, Lesia V. Protsailo, Timothy W. Patterson, Lei Chen, Mallika Gummalla
-
Publication number: 20180102556Abstract: Electrochemical cells, such as those present within flow batteries, can have an electrode and a bipolar plate in at least one half-cell interfacially bonded together with an electrically conductive adhesive. Bonding the bipolar plate to the electrode can decrease contact resistance and sometimes lessen the incidence of parasitic reactions in the electrochemical cell. Flow batteries containing these features can include: a first half-cell containing a first electrode in interfacial contact with a first bipolar plate, a second half-cell containing a second electrode in interfacial contact with a second bipolar plate, and a separator disposed between the first half-cell and the second half-cell. An electrically conductive adhesive interfacially bonds at least one of the first electrode to the first bipolar plate and the second electrode to the second bipolar plate. Each electrode maintains fluid communication with its corresponding bipolar plate.Type: ApplicationFiled: October 7, 2016Publication date: April 12, 2018Inventors: Srivatsava Venkataranga PURANAM, Timothy B. GREJTAK, Jeremy LORETZ, Thomas H. MADDEN, Joseph Johannes Henricus PIJPERS, Helen Elizabeth VANBENSCHOTEN, Curtis WARRINGTON
-
Patent number: 9865893Abstract: This invention is directed to aqueous redox flow batteries comprising ionically charged redox active materials and separators, wherein the separator is about 100 microns or less and the flow battery is capable of (a) operating with a current efficiency of at least 85% with a current density of at least about 100 mA/cm2; (b) operating with a round trip voltage efficiency of at least 60% with a current density of at least about 100 mA/cm2; and/or (c) giving rise to diffusion rates through the separator for the first active material, the second active material, or both, of about 1×10?7 mol/cm2-sec or less.Type: GrantFiled: July 24, 2013Date of Patent: January 9, 2018Assignee: Lockheed Martin Advanced Energy Storage, LLCInventors: Arthur J. Esswein, Steven Y. Reece, Thomas H. Madden, Thomas D. Jarvi, John Goeltz, Desiree Amadeo, Evan R. King, Nitin Tyagi