Patents by Inventor Thomas Henry Isaac

Thomas Henry Isaac has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10480024
    Abstract: A method for determining the sequence of nucleotide bases in a polynucleotide analyte is provided. It is characterised by the steps of (1) generating a stream of single nucleotide bases from the analyte; (2) producing captured molecules by reacting each single nucleotide base with a capture system; (3) amplifying at least part of the captured molecule to produce a plurality of amplicons characteristic of the single nucleotide base; (4) labelling the amplicons with a corresponding probe having a characteristic detectable element and (5) detecting a property characteristic of the detectable element.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: November 19, 2019
    Assignees: BASE4 INNOVATION LTD, UNITED KINGDOM RESEARCH AND INNOVATION
    Inventors: Cameron Alexander Frayling, Barnaby Balmforth, Bruno Flavio Nogueira de Sousa Soares, Thomas Henry Isaac, Boris Breiner, Alessandra Natale, Michele Amasio, Paul Dear
  • Patent number: 10369569
    Abstract: Disclosed is a method of identifying the contents of individual droplets in a droplet stream each droplet containing fluorophores in an initial non-fluorescing state characterized by the steps of introducing the droplets one-by-one into at least one open-ended tube to create a stack of droplets therein; activating the fluorophores within the droplets to cause them to fluoresce; releasing each droplet in the droplet stack in turn from the tube and detecting along the major axis of the tube fluorescence associated with each droplet as it emerges.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: August 6, 2019
    Assignee: BASE4 INNOVATION LTD
    Inventors: Cameron Alexander Frayling, Thomas Henry Isaac
  • Publication number: 20180353949
    Abstract: An apparatus for sequencing a nucleic acid by printing droplets at least some of which contain single nucleotides derived from the nucleic acid is provided.
    Type: Application
    Filed: July 6, 2016
    Publication date: December 13, 2018
    Applicant: BASE4 INNOVATION LTD
    Inventors: Cameron Alexander FRAYLING, Thomas Henry ISAAC
  • Publication number: 20180264475
    Abstract: Disclosed is a method of identifying the contents of individual droplets in a droplet stream each droplet containing fluorophores in an initial non-fluorescing state characterised by the steps of introducing the droplets one-by-one into at least one open-ended tube to create a stack of droplets therein; activating the fluorophores within the droplets to cause them to fluoresce; releasing each droplet in the droplet stack in turn from the tube and detecting along the major axis of the tube fluorescence associated with each droplet as it emerges.
    Type: Application
    Filed: July 14, 2017
    Publication date: September 20, 2018
    Applicant: BASE4 INNOVATION LTD
    Inventors: Cameron Alexander FRAYLING, Thomas Henry ISAAC
  • Patent number: 10000802
    Abstract: Disclosed is a method for determining the sequence of nucleotide bases in a polynucleotide analyte characterised by the steps of: a. generating a stream of droplets at least some of which contain a single nucleotide and wherein the order of single nucleotides in the droplet stream corresponds to the sequence of nucleotides in the analyte; b. introducing into each droplet a plurality of biological probe types each type (i) comprising a different detectable element in an undetectable state and (ii) being adapted to capture a different complimentary single nucleotide from which the analyte is constituted; c. causing the single nucleotide contained in the droplet to bind to its complimentary probe to create a used probe; and d. causing the detectable element to be released from the used probe in a detectable state.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: June 19, 2018
    Assignee: BASE4 INNOVATION LTD
    Inventors: Cameron Alexander Frayling, Barnaby Balmforth, Bruno Flavio Nogueira de Sousa Soares, Thomas Henry Isaac, Boris Breiner, Alessandra Natale, Michele Amasio
  • Publication number: 20180044728
    Abstract: A method for determining the sequence of nucleotide bases in a polynucleotide analyte is provided. It is characterised by the steps of (1) generating a stream of single nucleotide bases from the analyte by pyrophosphorolysis; (2) producing captured molecules by reacting each single nucleotide base with a capture system labelled with detectable elements in an undetectable state; (3) releasing the detectable elements from each captured molecule in a detectable state and (4) detecting the detectable elements so released and determining the sequence of nucleotide bases therefrom. The method can be used advantageously in sequencers involving the use of microdroplets.
    Type: Application
    Filed: October 5, 2017
    Publication date: February 15, 2018
    Applicants: BASE4 INNOVATION LTD, MEDICAL RESEARCH COUNCIL
    Inventors: Cameron Alexander FRAYLING, Barnaby BALMFORTH, Bruno Flavio Nogueira de Sousa SOARES, Thomas Henry ISAAC, Boris BREINER, Alessandra NATALE, Michele AMASIO, Paul DEAR
  • Publication number: 20180044729
    Abstract: A method for determining the sequence of nucleotide bases in a polynucleotide analyte is provided. It is characterised by the steps of (1) generating a stream of single nucleotide bases from the analyte by pyrophosphorolysis; (2) producing captured molecules by reacting each single nucleotide base with a capture system labelled with detectable elements in an undetectable state; (3) releasing the detectable elements from each captured molecule in a detectable state and (4) detecting the detectable elements so released and determining the sequence of nucleotide bases therefrom. The method can be used advantageously in sequencers involving the use of microdroplets.
    Type: Application
    Filed: October 5, 2017
    Publication date: February 15, 2018
    Applicants: BASE4 INNOVATION LTD, MEDICAL RESEARCH COUNCIL
    Inventors: Cameron Alexander FRAYLING, Barnaby BALMFORTH, Bruno Flavio Nogueira de Sousa SOARES, Thomas Henry ISAAC, Boris BREINER, Alessandra NATALE, Michele AMASIO, Paul DEAR
  • Publication number: 20180008985
    Abstract: An apparatus for sequencing a polynucleotide analyte is provided and comprises; •a first zone in which a stream of single nucleotides is generated by progressive digestion of a molecule of the analyte attached to a particle located therein and exposed to a flowing aqueous medium; •a second zone in which a corresponding stream of aqueous droplets is generated from the aqueous medium and the nucleotide stream and wherein at least some of the droplets contain a single nucleotide and •a third zone in which each droplet is stored and/or interrogated to reveal a property characteristic of the single nucleotide it may contain; characterised in that the first zone comprises a microfluidic channel through which the aqueous medium flows and the location comprises a hollow seating in a wall thereof to which suction can be applied and into which the particle can be close-fitted.
    Type: Application
    Filed: January 21, 2016
    Publication date: January 11, 2018
    Applicant: BASE4 INNOVATION LTD
    Inventors: Barnaby BALMFORTH, Cameron Alexander FRAYLING, Thomas Henry ISAAC
  • Patent number: 9828631
    Abstract: A method for determining the sequence of nucleotide bases in a polynucleotide analyte is provided. It is characterized by the steps of (1) generating a stream of single nucleotide bases from the analyte by pyrophosphorolysis; (2) producing captured molecules by reacting each single nucleotide base with a capture system labelled with detectable elements in an undetectable state; (3) releasing the detectable elements from each captured molecule in a detectable state and (4) detecting the detectable elements so released and determining the sequence of nucleotide bases therefrom. The method can be used advantageously in sequencers involving the use of microdroplets.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: November 28, 2017
    Assignees: BASE4 INNOVATION LTD, MEDICAL RESEARCH COUNCIL
    Inventors: Cameron Alexander Frayling, Barnaby Balmforth, Bruno Flavio Nogueira de Sousa Soares, Thomas Henry Isaac, Boris Breiner, Alessandra Natale, Michele Amasio, Paul Dear
  • Patent number: 9771615
    Abstract: Disclosed is a method for sequencing a polynucleotide analyte comprising: •a. generating a stream of droplets containing a single nucleotide wherein the order of single nucleotides in the droplet stream corresponds to the sequence of nucleotides in the analyte; •b. introducing into each droplet a plurality of biological probe types each type comprising a different label in an undetectable state and being adapted to capture a different single nucleotide; •c. causing the single nucleotide contained in the droplet to bind to its complementary probe and •d. causing the label to be released from the probe that has bound the nucleotide in a detectable state. The probe is a dumbbell shaped probe comprising fluorescent donor and quencher labels and a single nucleotide gap. After gap repair by a polymerase and a ligase, a restriction enzyme recognition site is cleaved by a restriction enzyme, followed by exonuclease digestion to release the labels.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: September 26, 2017
    Assignee: BASE4 INNOVATION LTD
    Inventors: Cameron Alexander Frayling, Barnaby Balmforth, Bruno Flavio Nogueira de Sousa Soares, Thomas Henry Isaac, Boris Breiner, Alessandra Natale, Michele Amasio
  • Publication number: 20160040224
    Abstract: A method for determining the sequence of nucleotide bases in a polynucleotide analyte is provided. It is characterised by the steps of (1) generating a stream of single nucleotide bases from the analyte by pyrophosphorolysis; (2) producing captured molecules by reacting each single nucleotide base with a capture system labelled with detectable elements in an undetectable state; (3) releasing the detectable elements from each captured molecule in a detectable state and (4) detecting the detectable elements so released and determining the sequence of nucleotide bases therefrom. The method can be used advantageously in sequencers involving the use of microdroplets.
    Type: Application
    Filed: April 9, 2014
    Publication date: February 11, 2016
    Applicants: MEDICAL RESEARCH COUNCIL, BASE4 INNOVATION LTD
    Inventors: Cameron Alexander FRAYLING, Barnaby BALMFORTH, Bruno Flavio Nogueira de Sousa SOARES, Thomas Henry ISAAC, Boris BREINER, Alessandra NATALE, Michele AMASIO, Paul DEAR
  • Publication number: 20160040223
    Abstract: A method for determining the sequence of nucleotide bases in a polynucleotide analyte is provided. It is characterised by the steps of (1) generating a stream of single nucleotide bases from the analyte; (2) producing captured molecules by reacting each single nucleotide base with a capture system; (3) amplifying at least part of the captured molecule to produce a plurality of amplicons characteristic of the single nucleotide base; (4) labelling the amplicons with a corresponding probe having a characteristic detectable element and (5) detecting a property characteristic of the detectable element.
    Type: Application
    Filed: April 9, 2014
    Publication date: February 11, 2016
    Applicants: MEDICAL RESEARCH COUNCIL, BASE4 INNOVATION LTD
    Inventors: Cameron Alexander FRAYLING, Barnaby BALMFORTH, Bruno Flavio Nogueira de Sousa SOARES, Thomas Henry ISAAC, Boris BREINER, Alessandra NATALE, Michele AMASIO, Paul DEAR
  • Publication number: 20150355096
    Abstract: Disclosed is a method for determining the sequence of nucleotide bases in a polynucleotide analyte. It is characterised by analyte characterised by the steps of: a. generating a stream of droplets at least some of which comprise both (1) a single nucleotide base and (2) colloidal metal particles capable of undergoing plasmon resonance and b. irradiating each droplet with electromagnetic radiation to cause (1) the metal particles also contained therein to undergo plasmon resonance and (2) the nucleotide base contained therein to Raman scatter light at one or more wavelengths characteristic of its type. Suitably, the order of the single nucleotides bases in the droplet stream corresponds to the sequence of nucleotide bases in the analyte.
    Type: Application
    Filed: January 17, 2014
    Publication date: December 10, 2015
    Inventors: Alessandra NATALE, Bruno Flavio Nogueira de Sousa SOARES, Cameron Alexander FRAYLING, Michele AMASIO, Thomas Henry ISAAC
  • Publication number: 20150275293
    Abstract: Disclosed is a biological probe characterised in that it comprises a single-stranded nucleotide region the ends of which are attached to two different oligonucleotide regions wherein at least one of the oligonucleotide regions comprises detectable elements having a characteristic detection property and wherein the detectable elements are so arranged on the oligonucleotide region that the detectable property is less detectable than when the same number detectable elements are bound to a corresponding number of single nucleotides. The biological probe is especially useful for capturing single nucleotides or single-stranded nucleotides to create a used probe which can be degraded by means of a restriction enzyme and an exonuclease to generate single nucleotides carrying a detectable element in a form which can be detected.
    Type: Application
    Filed: October 4, 2013
    Publication date: October 1, 2015
    Applicant: BASE4 INNOVATION LTD
    Inventors: Cameron Alexander Frayling, Barnaby Balmforth, Bruno Flavio Nogueira de Sousa Soares, Thomas Henry Isaac, Boris Breiner, Alessandra Natale, Michele Amasio
  • Publication number: 20150247192
    Abstract: Disclosed is a method for sequencing a polynucleotide analyte comprising:•a. generating a stream of droplets containing a single nucleotide wherein the order of single nucleotides in the droplet stream corresponds to the sequence of nucleotides in the analyte;•b. introducing into each droplet a plurality of biological probe types each type comprising a different label in an undetectable state and being adapted to capture a different single nucleotide;•c. causing the single nucleotide contained in the droplet to bind to its complementary probe and•d. causing the label to be released from the probe that has bound the nucleotide in a detectable state. The probe is a dumbbell shaped probe comprising fluorescent donor and quencher labels and a single nucleotide gap. After gap repair by a polymerase and a ligase, a restriction enzyme recognition site is cleaved by a restriction enzyme, followed by exonuclease digestion to release the labels.
    Type: Application
    Filed: October 4, 2013
    Publication date: September 3, 2015
    Inventors: Cameron Alexander Frayling, Barnaby Balmforth, Bruno Flavio Nogueira de Sousa Soares, Thomas Henry Isaac, Boris Breiner, Alessandra Natale, Michele Amasio
  • Publication number: 20150232925
    Abstract: Disclosed is a method for determining the sequence of nucleotide bases in a polynucleotide analyte characterised by the steps of: a. generating a stream of droplets at least some of which contain a single nucleotide and wherein the order of single nucleotides in the droplet stream corresponds to the sequence of nucleotides in the analyte; b. introducing into each droplet a plurality of biological probe types each type (i) comprising a different detectable element in an undetectable state and (ii) being adapted to capture a different complimentary single nucleotide from which the analyte is constituted; c. causing the single nucleotide contained in the droplet to bind to its complimentary probe to create a used probe and d. causing the detectable element to be released from the used probe in a detectable state.
    Type: Application
    Filed: April 9, 2015
    Publication date: August 20, 2015
    Inventors: Cameron Alexander FRAYLING, Barnaby BALMFORTH, Bruno Flavio Nogueira de Sousa SOARES, Thomas Henry ISAAC, Boris BREINER, Alessandra NATALE, Michele AMASIO
  • Publication number: 20140175309
    Abstract: A device (10) for determining the number of discrete events represented by an input signal is provided. The input signal may, for example, comprise pulses representing photons arriving at a detector. The device (10) may comprise a plurality, n, of comparator circuits (14) for reading the signal. For each comparator circuit (14) from i=1 to i=n, the comparator circuit (14) has a corresponding threshold value which the amplitude of a pulse representing i discrete events will exceed, but which the amplitude of a pulse representing i-1 discrete events will not exceed. Each comparator circuit (14) is arranged to output a first value when the input signal exceeds its threshold value and a second value when the input signal is less than its threshold value. The device (10) includes a counter (16) for counting the number of outputs of the first value that have been output by the plurality of comparator circuits (14).
    Type: Application
    Filed: August 2, 2012
    Publication date: June 26, 2014
    Inventor: Thomas Henry Isaac