Patents by Inventor Thomas J. Bievenue

Thomas J. Bievenue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7519159
    Abstract: A method and device for cooling and electrically-insulating a high-voltage, heat-generating component, for example, an x-ray tube (1105) for analyzing fluids by means of x-ray fluorescence. The device includes an x-ray source (1100) including an x-ray tube (1105) having improved heat-dissipating properties due to the thermal coupling of the x-ray tube with a thermally-conductive, dielectric material (1150). The device may include a base assembly (1135) mounted to the component for conducting heat away from the component while electrically isolating the component. In one aspect of the invention, the base assembly includes two copper plates (1140, 1145) separated by a dielectric plate (1150). The dielectric plate minimizes or prevents the leakage of current through the base assembly (1135). One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: April 14, 2009
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: Ian Radley, Thomas J. Bievenue, John H. Burdett, Jr., Brian W. Gallagher, Stuart M. Shakshober, Zewu Chen
  • Patent number: 7382856
    Abstract: An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: June 3, 2008
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: Ian Radley, Thomas J. Bievenue, John H. Burdett, Brian W. Gallagher, Stuart M. Shakshober, Zewu Chen, Michael D. Moore
  • Patent number: 7209545
    Abstract: An x-ray source assembly (2700) and method of operation are provided having enhanced output stability. The assembly includes an anode (2125) having a source spot upon which electrons (2120) impinge and a control system (2715/2720) for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure (2710) notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: April 24, 2007
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: Ian Radley, Thomas J. Bievenue, John H. Burdett, Jr., Brian W. Gallagher, Stuart M. Shakshober, Zewu Chen, Michael D. Moore
  • Patent number: 7110506
    Abstract: A method and device for cooling and electrically-insulating a high-voltage, heat-generating component, for example, an x-ray tube (1105) for analyzing fluids by means of x-ray fluorescence. The device includes an x-ray source (1100) including an x-ray tube (1105) having improved heat-dissipating properties due to the thermal coupling of the x-ray tube with a thermally-conductive, dielectric material (1150). The device may include a base assembly (1135) mounted to the component for conducting heat away from the component while electrically isolating the component. In one aspect of the invention, the base assembly includes two copper plates (1140, 1145) separated by a dielectric plate (1150). The dielectric plate minimizes or prevents the leakage of current through the base assembly (1135). One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: September 19, 2006
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: Ian Radley, Thomas J. Bievenue, John H. Burdett, Jr., Brian W. Gallagher, Stuart M. Shakshober, Zewu Chen
  • Patent number: 7072439
    Abstract: A technique for analyzing fluids by means of x-ray fluorescence applicable to any fluid, including liquids and gases, which emit x-ray fluorescence when exposed to x-rays. The apparatus includes an x-ray source (82) including an x-ray tube (64) having improved heat dissipating properties due to a thermally-conductive, dielectric material (70, 1150). The x-ray tube also includes means for aligning (100, 2150, 2715) the tube with the source housing whereby the orientation of the x-ray beam produced by the source can be optimized, and stabilized over various operating conditions. The method and apparatus may also include an x-ray detector having a small-area, for example, a PIN-diode type semiconductor x-ray detector (120), that can provide effective x-ray detection at room temperature. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: July 4, 2006
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: Ian Radley, Thomas J. Bievenue, John H. Burdett, Jr., Brian W. Gallagher, Stuart M. Shakshober, Zewu Chen, Michael D. Moore
  • Patent number: 6935778
    Abstract: Methods and devices for aligning an x-ray optic with a source of x-rays and methods and devices for determining a focusing characteristic of an x-ray optic are provided. The methods and devices simplify the process of aligning an x-ray optic device (for example, a polycapillary x-ray optic) to an x-ray source or for measuring a focusing characteristic, for example, the focal length or beam shape, of an x-ray optic. In one aspect, the device includes a housing having a first aperture adapted for receiving an x-ray optic and a surface having an x-ray flourescent material from which visual fluorescence occurs when impinged by x-rays. The size and shape of fluorescence from the surface may be varied by moving the surface to determine, for example, the focal length of the x-ray optic.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: August 30, 2005
    Assignee: X-Ray Optical Systems Incorporated
    Inventors: Thomas J. Bievenue, John H. Burdett, Jr.
  • Publication number: 20040218725
    Abstract: A method and device for cooling and electrically-insulating a high-voltage, heat-generating component, for example, an x-ray tube (1105) for analyzing fluids by means of x-ray fluorescence. The device includes an x-ray source (1100) including an x-ray tube (1105) having improved heat-dissipating properties due to the thermal coupling of the x-ray tube with a thermally-conductive, dielectric material (1150). The device may include a base assembly (1135) mounted to the component for conducting heat away from the component while electrically isolating the component. In one aspect of the invention, the base assembly includes two copper plates (1140, 1145) separated by a dielectric plate (1150). The dielectric plate minimizes or prevents the leakage of current through the base assembly (1135). One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.
    Type: Application
    Filed: June 3, 2004
    Publication date: November 4, 2004
    Applicant: X-Ray Optical Systems, Inc.
    Inventors: Ian Radley, Thomas J. Bievenue, John H. Burdett, Brian W. Gallagher, Stuart M. Shakshober, Zewu Chen
  • Publication number: 20040151281
    Abstract: Methods and devices for aligning an x-ray optic with a source of x-rays and methods and devices for determining a focusing characteristic of an x-ray optic are provided. The methods and devices simplify the process of aligning an x-ray optic device (for example, a polycapillary x-ray optic) to an x-ray source or for measuring a focusing characteristic, for example, the focal length or beam shape, of an x-ray optic. In one aspect, the device includes a housing having a first aperture adapted for receiving an x-ray optic and a surface having an x-ray flourescent material from which visual fluorescence occurs when impinged by x-rays. The size and shape of fluorescence from the surface may be varied by moving the surface to determine, for example, the focal length of the x-ray optic.
    Type: Application
    Filed: January 23, 2004
    Publication date: August 5, 2004
    Applicant: X-Ray Optical Systems, Inc.
    Inventors: Thomas J. Bievenue, John H. Burdett
  • Patent number: 6704389
    Abstract: A unitary support device for a polycapillary optic is provided wherein a housing has a central opening therethrough and at least two locating structures, such as positioning shoulders, formed therein. Each locating structure is sized and positioned to accommodate a different polycapillary positioning component within the housing. Each polycapillary positioning component has at least one opening for holding at least one polycapillary of the polycapillary optic. One or more coaxial bores can define the central opening of the housing and the locating shoulders in one continuous fabrication operation. Depending upon the polycapillary positioning components employed, i.e., location of the openings therein for accommodating the polycapillaries, the positioning components can be oriented within the housing such that radiation from one of a divergent beam, a focused beam, or a parallel beam is collected by the optic, and such that the optic can output one of a collimated beam, a focused beam or a divergent beam.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: March 9, 2004
    Assignee: X-Ray Optical Systems, Inc.
    Inventors: Thomas J. Bievenue, John H. Burdett