Patents by Inventor Thomas J. Frederick

Thomas J. Frederick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11115083
    Abstract: A polar transmitter for an RFID reader and a system using the polar transmitter are disclosed. An RFID system according to at least some embodiments of the invention includes a polar transmitter, a receiver to receive responses from RFID tags, and a coupler connected to the polar transmitter, the receiver and one or more antennas. In at least some embodiments, the polar transmitter of the RFID system includes an envelope amplifier and a power amplifier. In some examples, a polar transmitter includes direct conversion of baseband data to provide angle modulation plus drive modulation. In addition to the envelope amplifier and power amplifier, the polar transmitter in such an example includes a quadrature modulator connected to the power amplifier to provide modulation for the transmitter output signal using a Cartesian input signal.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: September 7, 2021
    Assignee: CLAIRVOYANT TECHNOLOGY, INC.
    Inventor: Thomas J. Frederick
  • Publication number: 20210271947
    Abstract: A radio frequency identification (RFID) automatic vehicle identification (AVI) system configured to mitigate signal interference, the system comprising a plurality of RFID readers, comprising a first RFID reader and a second RFID reader; and a plurality of antennas, wherein a first antenna is connected to the first RFID reader and a second antenna is connected to the second RFID reader. Prior to the first RFID reader transmitting a signal through the first antenna, the first RFID reader samples a received radio frequency (RF) signal from the first antenna, and if the received RF signal meets predetermined strength and frequency criteria, the first RFID reader inhibits transmission of the signal through the first antenna.
    Type: Application
    Filed: May 19, 2021
    Publication date: September 2, 2021
    Inventors: George D. CRUICKSHANKS, David R. MISSIMER, Christopher J. HOPKINS, Steven C. LIN, Thomas J. FREDERICK
  • Patent number: 11023799
    Abstract: A radio frequency identification (RFID) automatic vehicle identification (AVI) system configured to mitigate signal interference, the system comprising a plurality of RFID readers, comprising a first RFID reader and a second RFID reader; and a plurality of antennas, wherein a first antenna is connected to the first RFID reader and a second antenna is connected to the second RFID reader. Prior to the first RFID reader transmitting a signal through the first antenna, the first RFID reader samples a received radio frequency (RF) signal from the first antenna, and if the received RF signal meets predetermined strength and frequency criteria, the first RFID reader inhibits transmission of the signal through the first antenna.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: June 1, 2021
    Assignee: NEOLOGY, INC.
    Inventors: George D. Cruickshanks, David R. Missimer, Christopher J. Hopkins, Steven C. Lin, Thomas J. Frederick
  • Patent number: 10797757
    Abstract: An RF system using amplitude modulation (AM) with orthogonal offset is disclosed. The orthogonal offset generator can shift the AM signal trajectory away from the origin while maintaining the time domain requirements for an RFID signal, such as waveform edge rise and fall times. In some embodiments stored waveforms incorporating the controlled orthogonal offset are used to synthesize a sequence of symbols. The stored waveforms may also include nonlinear and/or linear predistortion to reduce computational complexity. The waveforms can be represented in Cartesian coordinates for use in a direct conversion transmitter or polar coordinates for use in a polar modulation transmitter. An RFID system can also include a receiver to receive incoming RFID signals.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: October 6, 2020
    Assignee: Clairvoyant Technology, Inc.
    Inventor: Thomas J. Frederick
  • Publication number: 20200153484
    Abstract: A polar transmitter for an RFID reader and a system using the polar transmitter are disclosed. An RFID system according to at least some embodiments of the invention includes a polar transmitter, a receiver to receive responses from RFID tags, and a coupler connected to the polar transmitter, the receiver and one or more antennas. In at least some embodiments, the polar transmitter of the RFID system includes an envelope amplifier and a power amplifier. In some examples, a polar transmitter includes direct conversion of baseband data to provide angle modulation plus drive modulation. In addition to the envelope amplifier and power amplifier, the polar transmitter in such an example includes a quadrature modulator connected to the power amplifier to provide modulation for the transmitter output signal using a Cartesian input signal.
    Type: Application
    Filed: January 16, 2020
    Publication date: May 14, 2020
    Inventor: Thomas J. Frederick
  • Publication number: 20200082237
    Abstract: A radio frequency identification (RFID) automatic vehicle identification (AVI) system configured to mitigate signal interference, the system comprising a plurality of RFID readers, comprising a first RFID reader and a second RFID reader; and a plurality of antennas, wherein a first antenna is connected to the first RFID reader and a second antenna is connected to the second RFID reader. Prior to the first RFID reader transmitting a signal through the first antenna, the first RFID reader samples a received radio frequency (RF) signal from the first antenna, and if the received RF signal meets predetermined strength and frequency criteria, the first RFID reader inhibits transmission of the signal through the first antenna.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 12, 2020
    Inventors: George D. CRUICKSHANKS, David R. MISSIMER, Christopher J. HOPKINS, Steven C. LIN, Thomas J. FREDERICK
  • Patent number: 10539648
    Abstract: RFID tag tracking according to embodiments of the invention uses apparatus and methods for tracking backscatter RFID tags using the phase and receive signal strength of the tag signal. The tag tracking in some embodiments is accomplished with a computationally efficient recursive procedure to update a tag state estimate on each new response of the tag based on the previous tag state estimate and the measured phase of the tag signal. Some embodiments use a Monte Carlo simulation based on the previous tracking algorithm state and a statistical model of the forces acting on the tag. A system according to example embodiments of the invention can include a processor connected to a quadrature mixer. The processor is operable, for example through the use of firmware or software, to estimate a tag state of an RFID tag.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: January 21, 2020
    Assignee: Clarivoyant Technology LLC
    Inventor: Thomas J. Frederick
  • Patent number: 10540526
    Abstract: A polar transmitter for an RFID reader and a system using the polar transmitter are disclosed. An RFID system according to at least some embodiments of the invention includes a polar transmitter, a receiver to receive responses from RFID tags, and a coupler connected to the polar transmitter, the receiver and one or more antennas. In at least some embodiments, the polar transmitter of the RFID system includes an envelope amplifier with a multi-phase buck converter to provide an envelope signal and a phase modulator connected to a power amplifier to phase modulate the power amplifier using a phase signal. In at least some embodiments, the polar transmitter of the RFID system transmits OPR-ASK signals to reduce AM modulation depth and provide a continuous phase signal for the phase modulator.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 21, 2020
    Assignee: Clairvoyant Technology LLC
    Inventor: Thomas J. Frederick
  • Publication number: 20190372626
    Abstract: A polar transmitter for an RFID reader and a system using the polar transmitter are disclosed. An RFID system according to at least some embodiments of the invention includes a polar transmitter, a receiver to receive responses from RFID tags, and a coupler connected to the polar transmitter, the receiver and one or more antennas. In at least some embodiments, the polar transmitter of the RFID system includes an envelope amplifier with a multi-phase buck converter to provide an envelope signal and a phase modulator connected to a power amplifier to phase modulate the power amplifier using a phase signal. In at least some embodiments, the polar transmitter of the RFID system transmits OPR-ASK signals to reduce AM modulation depth and provide a continuous phase signal for the phase modulator.
    Type: Application
    Filed: August 15, 2019
    Publication date: December 5, 2019
    Inventor: Thomas J. Frederick
  • Patent number: 10482366
    Abstract: A radio frequency identification (RFID) automatic vehicle identification (AVI) system configured to mitigate signal interference, the system comprising a plurality of RFID readers, comprising a first RFID reader and a second RFID reader; and a plurality of antennas, wherein a first antenna is connected to the first RFID reader and a second antenna is connected to the second RFID reader. Prior to the first RFID reader transmitting a signal through the first antenna, the first RFID reader samples a received radio frequency (RF) signal from the first antenna, and if the received RF signal meets predetermined strength and frequency criteria, the first RFID reader inhibits transmission of the signal through the first antenna.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: November 19, 2019
    Assignee: Neology, Inc.
    Inventors: George D. Cruickshanks, David R. Missimer, Christopher J. Hopkins, Steven C. Lin, Thomas J. Frederick
  • Patent number: 10387691
    Abstract: A polar transmitter for an RFID reader and a system using the polar transmitter are disclosed. An RFID system according to at least some embodiments of the invention includes a polar transmitter employing a switch mode power amplifier. The system can also include a receiver to receive responses from RFID tags and a coupler connected to the polar transmitter, the receiver and one or more antennas. In at least some embodiments, the polar transmitter of the RFID system includes an envelope amplifier connected to the switch mode power amplifier to provide an envelope signal and a phase modulator connected to the switch mode power amplifier to phase modulate the switch mode power amplifier using a phase signal. In at least some embodiments, the polar transmitter of the RFID system transmits OPR-ASK signals to reduce AM modulation depth and provide a continuous phase signal for the phase modulator.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: August 20, 2019
    Assignee: Clairvoyant Technology LLC
    Inventor: Thomas J. Frederick
  • Publication number: 20190222264
    Abstract: An RF system using amplitude modulation (AM) with orthogonal offset is disclosed. The orthogonal offset generator can shift the AM signal trajectory away from the origin while maintaining the time domain requirements for an RFID signal, such as waveform edge rise and fall times. In some embodiments stored waveforms incorporating the controlled orthogonal offset are used to synthesize a sequence of symbols. The stored waveforms may also include nonlinear and/or linear predistortion to reduce computational complexity. The waveforms can be represented in Cartesian coordinates for use in a direct conversion transmitter or polar coordinates for use in a polar modulation transmitter. An RFID system can also include a receiver to receive incoming RFID signals.
    Type: Application
    Filed: February 19, 2019
    Publication date: July 18, 2019
    Applicant: Clairvoyant Technology LLC
    Inventor: Thomas J. Frederick
  • Publication number: 20190213457
    Abstract: A radio frequency identification (RFID) automatic vehicle identification (AVI) system configured to mitigate signal interference, the system comprising a plurality of RFID readers, comprising a first RFID reader and a second RFID reader; and a plurality of antennas, wherein a first antenna is connected to the first RFID reader and a second antenna is connected to the second RFID reader. Prior to the first RFID reader transmitting a signal through the first antenna, the first RFID reader samples a received radio frequency (RF) signal from the first antenna, and if the received RF signal meets predetermined strength and frequency criteria, the first RFID reader inhibits transmission of the signal through the first antenna.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 11, 2019
    Inventors: George D. CRUICKSHANKS, David R. MISSIMER, Christopher J. HOPKINS, Steven C. LIN, Thomas J. FREDERICK
  • Patent number: 10235616
    Abstract: A radio frequency identification (RFID) automatic vehicle identification (AVI) system configured to mitigate signal interference, the system comprising a plurality of RFID readers, comprising a first RFID reader and a second RFID reader; and a plurality of antennas, wherein a first antenna is connected to the first RFID reader and a second antenna is connected to the second RFID reader. Prior to the first RFID reader transmitting a signal through the first antenna, the first RFID reader samples a received radio frequency (RF) signal from the first antenna, and if the received RF signal meets predetermined strength and frequency criteria, the first RFID reader inhibits transmission of the signal through the first antenna.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: March 19, 2019
    Assignee: Neology, Inc.
    Inventors: George D. Cruickshanks, David R. Missimer, Christopher J. Hopkins, Steven C. Lin, Thomas J. Frederick
  • Patent number: 10230429
    Abstract: An RF system using PR-ASK with orthogonal offset is disclosed. In some embodiments, the system includes a PR-ASK signal generator and an orthogonal offset generator. The PR-ASK signal generator can produce a signal representing a sequence of symbols, for example, RFID symbols. The orthogonal offset generator can shift the PR-ASK signal trajectory away from the origin while maintaining the time domain requirements for an RFID signal, such as waveform edge rise and fall times. In some embodiments stored waveforms incorporating the controlled orthogonal offset are used to synthesize a sequence of symbols. The stored waveforms may also include nonlinear and/or linear predistortion to reduce computational complexity. The waveforms can be represented in Cartesian coordinates for use in a direct conversion transmitter or polar coordinates for use in a polar modulation transmitter. An RFID system can also include a receiver to receive incoming RFID signals.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: March 12, 2019
    Assignee: CLAIRVOYANT TECHNOLOGY LLC
    Inventor: Thomas J. Frederick
  • Publication number: 20180075333
    Abstract: A radio frequency identification (RFID) automatic vehicle identification (AVI) system configured to mitigate signal interference, the system comprising a plurality of RFID readers, comprising a first RFID reader and a second RFID reader; and a plurality of antennas, wherein a first antenna is connected to the first RFID reader and a second antenna is connected to the second RFID reader. Prior to the first RFID reader transmitting a signal through the first antenna, the first RFID reader samples a received radio frequency (RF) signal from the first antenna, and if the received RF signal meets predetermined strength and frequency criteria, the first RFID reader inhibits transmission of the signal through the first antenna.
    Type: Application
    Filed: November 17, 2017
    Publication date: March 15, 2018
    Inventors: George D. Cruickshanks, David R. Missimer, Christopher J. Hopkins, Steven C. Lin, Thomas J. Frederick
  • Publication number: 20180013469
    Abstract: An RF system using PR-ASK with orthogonal offset is disclosed. In some embodiments, the system includes a PR-ASK signal generator and an orthogonal offset generator. The PR-ASK signal generator can produce a signal representing a sequence of symbols, for example, RFID symbols. The orthogonal offset generator can shift the PR-ASK signal trajectory away from the origin while maintaining the time domain requirements for an RFID signal, such as waveform edge rise and fall times. In some embodiments stored waveforms incorporating the controlled orthogonal offset are used to synthesize a sequence of symbols. The stored waveforms may also include nonlinear and/or linear predistortion to reduce computational complexity. The waveforms can be represented in Cartesian coordinates for use in a direct conversion transmitter or polar coordinates for use in a polar modulation transmitter. An RFID system can also include a receiver to receive incoming RFID signals.
    Type: Application
    Filed: September 21, 2017
    Publication date: January 11, 2018
    Inventor: Thomas J. Frederick
  • Patent number: 9824309
    Abstract: A radio frequency identification (RFID) automatic vehicle identification (AVI) system configured to mitigate signal interference, the system comprising a plurality of RFID readers, comprising a first RFID reader and a second RFID reader; and a plurality of antennas, wherein a first antenna is connected to the first RFID reader and a second antenna is connected to the second RFID reader. Prior to the first RFID reader transmitting a signal through the first antenna, the first RFID reader samples a received radio frequency (RF) signal from the first antenna, and if the received RF signal meets predetermined strength and frequency criteria, the first RFID reader inhibits transmission of the signal through the first antenna.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: November 21, 2017
    Assignee: NEOLOGY, INC.
    Inventors: George D. Cruickshanks, David R. Missimer, Christopher J. Hopkins, Steven C. Lin, Thomas J. Frederick
  • Patent number: 9813115
    Abstract: An RF system using PR-ASK with orthogonal offset is disclosed. In some embodiments, the system includes a PR-ASK signal generator and an orthogonal offset generator. The PR-ASK signal generator can produce a signal representing a sequence of symbols, for example, RFID symbols. The orthogonal offset generator can shift the PR-ASK signal trajectory away from the origin while maintaining the time domain requirements for an RFID signal, such as waveform edge rise and fall times. In some embodiments stored waveforms incorporating the controlled orthogonal offset are used to synthesize a sequence of symbols. The stored waveforms may also include nonlinear and/or linear predistortion to reduce computational complexity. The waveforms can be represented in Cartesian coordinates for use in a direct conversion transmitter or polar coordinates for use in a polar modulation transmitter. An RFID system can also include a receiver to receive incoming RFID signals.
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: November 7, 2017
    Assignee: Clairvoyant Technology LLC
    Inventor: Thomas J. Frederick
  • Publication number: 20170199268
    Abstract: RFID tag tracking according to embodiments of the invention uses apparatus and methods for tracking backscatter RFID tags using the phase and receive signal strength of the tag signal. The tag tracking in some embodiments is accomplished with a computationally efficient recursive procedure to update a tag state estimate on each new response of the tag based on the previous tag state estimate and the measured phase of the tag signal. Some embodiments use a Monte Carlo simulation based on the previous tracking algorithm state and a statistical model of the forces acting on the tag. A system according to example embodiments of the invention can include a processor connected to a quadrature mixer. The processor is operable, for example through the use of firmware or software, to estimate a tag state of an RFID tag.
    Type: Application
    Filed: June 11, 2015
    Publication date: July 13, 2017
    Inventor: Thomas J. Frederick