Patents by Inventor Thomas J. Kennedy, III

Thomas J. Kennedy, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10662402
    Abstract: Acoustic perfusion devices for separating biological cells from other material in a fluid mixture are disclosed. The devices include an inlet port, an outlet port, and a collection port that are connected to an acoustic chamber. An ultrasonic transducer creates an acoustic standing wave in the acoustic chamber that permits a continuous flow of fluid to be recovered through the collection port while keeping the biological cells within the acoustic chamber to be returned to the bioreactor from which the fluid mixture is being drawn.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: May 26, 2020
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Erik Miller, Benjamin Ross-Johnsrud, Walter M. Presz, Jr., Kedar Chitale, Thomas J. Kennedy, III, Lauryn Winiarski
  • Publication number: 20200087939
    Abstract: A low cost and disaster relief housing solution includes the combination of preconstructed in-service or out-of-service shipping containers that are integrated with renewable and sustainable materials to complete the buildout of the shipping containers. The embodiment also includes folding solutions that allows for a superior logistic solution for shipping and site integration.
    Type: Application
    Filed: September 14, 2019
    Publication date: March 19, 2020
    Applicant: VBBT Corp
    Inventors: Yuk-Kwan Brian Yuen, Venesia Hurtubise, William John Kehoe, Thomas J Kennedy, III
  • Patent number: 10550382
    Abstract: Devices for separating materials from a host fluid are disclosed. The devices include a flow chamber, an ultrasonic transducer, and a reflector. The ultrasonic transducer and reflector create an angled acoustic standing wave oriented at an angle relative to the direction of mean flow through the flow chamber. The angled acoustic standing wave results in an acoustic radiation force having an axial force component that deflects the materials, so that the materials and the host fluid can thus be separated. The angled acoustic standing wave can be oriented at an angle of about 20° to about 70° relative to the direction of mean flow through the flow chamber to deflect, collect, differentiate, or fractionate the materials from the fluid flowing through the device at flow rates of about 400 mL/min up to about 700 mL/min.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: February 4, 2020
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Walter M. Presz, Jr., Kedar Chitale, Thomas J. Kennedy, III, Ben Ross-Johnsrud
  • Publication number: 20190276786
    Abstract: A bioreactor utilizing a multilayer disposable bag that may include at least one ultrasonic transducer that can acoustically generate a multi-dimensional standing wave. The standing wave can be used to retain cells in the bioreactor, and can also be utilized to dewater or further harvest product from the waste materials produced in a bioreactor.
    Type: Application
    Filed: March 11, 2019
    Publication date: September 12, 2019
    Inventors: Bart Lipkens, Rui Tostoes, Benjamin Ross-Johnsrud, Thomas J. Kennedy, III
  • Patent number: 10350514
    Abstract: An acoustic standing wave is utilized to separate components from a multi-component fluid, such as oil from an oil-water mixture, in a fluid flow scheme with an acoustophoresis device. For example, the flow scheme and device allows for trapping of the oil as the oil coalesces, agglomerates, and becomes more buoyant than the water.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: July 16, 2019
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Jason Dionne, Ari Mercado, Brian Dutra, Walter M. Presz, Jr., Thomas J. Kennedy, III, Louis Masi
  • Publication number: 20190211462
    Abstract: Methods for introducing foreign nucleic acids into cells, such as by performing transfection/transduction, using acoustic processes are disclosed herein. The foreign DNA/RNA and the cells are co-located in a multi-dimensional acoustic standing wave, or are co-located by acoustic streaming.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 11, 2019
    Inventors: BART LIPKENS, Goutam Ghoshal, Nicholas Manzi, Thomas J. Kennedy, III, Rui Tostoes, Benjamin Ross-Johnsrud
  • Patent number: 10322949
    Abstract: Separation of particles or droplets from a host fluid may be achieved using a transducer and/or reflector that is a thin, non-planar structure. The thin non-planar structure improves operation of an acoustic standing wave generated by an acoustic transducer. The structure may operate as a pressure release boundary and may be constructed as plastic film.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: June 18, 2019
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Walter M. Presz, Jr., Kedar Chitale, Brian McCarthy, Benjamin Ross-Johnsrud, Thomas J. Kennedy, III, Dane Mealey, Brian Dutra, David Sokolowski
  • Publication number: 20190144813
    Abstract: Microparticles and nanoparticles made of various materials that are used in various configurations are disclosed. Such particles can also contain various types of materials as payloads to be used in the separation, segregation, differentiation, modification or filtration of a system or a host anatomy. The microparticles and nanoparticles are utilized in conjunction with an acoustic standing wave or an acoustic traveling wave in various processes.
    Type: Application
    Filed: December 3, 2018
    Publication date: May 16, 2019
    Inventors: Bart Lipkens, Krishna Kumar, Rui Tostoes, Thomas J Kennedy, III
  • Patent number: 10040011
    Abstract: A system having improved trapping force for acoustophoresis is described where the trapping force is improved by manipulation of the frequency of the ultrasonic transducer. The transducer includes a ceramic crystal. The crystal may be directly exposed to fluid flow. The crystal may be air backed, resulting in a higher Q factor.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 7, 2018
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Jason Dionne, Thomas J. Kennedy, III
  • Publication number: 20180087044
    Abstract: A system having improved trapping force for acoustophoresis is described where the trapping force is improved by manipulation of the frequency of the ultrasonic transducer. The transducer includes a ceramic crystal. The crystal may be directly exposed to fluid flow. The crystal may be air backed, resulting in a higher Q factor.
    Type: Application
    Filed: July 11, 2017
    Publication date: March 29, 2018
    Inventors: Bart Lipkens, Jason Dionne, Walter M. Presz, Thomas J. Kennedy, III
  • Publication number: 20180066224
    Abstract: Methods are disclosed for separating beads and cells from a host fluid. The method includes flowing a mixture containing the host fluid, the beads, and the cells through an acoustophoretic device having an ultrasonic transducer including a piezoelectric material driven by a drive signal to create a multi-dimensional acoustic standing wave. A drive signal is sent to drive the at least one ultrasonic transducer to create the multi-dimensional acoustic standing wave. A recirculating fluid stream having a tangential flow path is located substantially tangential to the standing wave and separated therefrom by an interface region. A portion of the cells pass through the standing wave, and the beads are held back from the standing wave in the recirculating fluid stream at the interface region. Also disclosed is an acoustophoretic device having a coolant inlet adapted to permit the ingress of a cooling fluid into the device for cooling the transducer.
    Type: Application
    Filed: August 29, 2017
    Publication date: March 8, 2018
    Inventors: Bart Lipkens, Rudolf Gilmanshin, Louis Masi, Benjamin Ross-Johnsrud, Erik Miller, Walter M. Presz, JR., Thomas J. Kennedy, III
  • Publication number: 20180010085
    Abstract: Acoustic perfusion devices for separating biological cells from other material in a fluid mixture are disclosed. The devices include an inlet port, an outlet port, and a collection port that are connected to an acoustic chamber. An ultrasonic transducer creates an acoustic standing wave in the acoustic chamber that permits a continuous flow of fluid to be recovered through the collection port while keeping the biological cells within the acoustic chamber to be returned to the bioreactor from which the fluid mixture is being drawn.
    Type: Application
    Filed: September 5, 2017
    Publication date: January 11, 2018
    Inventors: Bart Lipkens, Erik Miller, Benjamin Ross-Johnsrud, Walter M. Presz, Kedar Chitale, Thomas J. Kennedy, III, Lauren Winiarski
  • Publication number: 20180003110
    Abstract: Engine inlets are disclosed that include an intake opening for the ingress of incoming air and acoustic filtration means for generating an acoustic wave that separates or clarifies material from the incoming air. The acoustic filtration means can include at least one ultrasonic transducer with a piezoelectric material configured to be driven to create an acoustic wave, such as a multi-dimensional acoustic wave or angled acoustic wave. Physical filtration means, such as an inertial or vortical separator, can be provided. Other engine inlets are also disclosed in which the acoustic filtration means are located within the physical filtration means. Further disclosed are methods for separating material from air employing acoustic separation means and physical filtration means.
    Type: Application
    Filed: July 3, 2017
    Publication date: January 4, 2018
    Inventors: Bart Lipkens, Walter M. Presz, JR., Wayne A. Thresher, Brian Kennedy, Thomas J. Kennedy, III
  • Publication number: 20170369865
    Abstract: An acoustophoresis device includes an acoustic chamber with a piezoelectric element located within its volume. The piezoelectric element vibrates and generates acoustic standing waves from both sides, so that particles can be separated from fluid passing through the acoustic chamber. This permits the element to be cooled more efficiently, reducing transient heat loads in the fluid traveling through the device.
    Type: Application
    Filed: August 8, 2017
    Publication date: December 28, 2017
    Inventors: Bart Lipkens, Brian McCarthy, Ben Ross-Johnsrud, Jason Barnes, Dane Mealey, Thomas J. Kennedy, III
  • Publication number: 20170355623
    Abstract: A system for enhancing the separation of particles or fluids from water is disclosed. A tank or bioreactor is provided with an open submersible acoustophoretic separator. The separator captures and holds fluid droplets or particles such as cells, permitting them to coalesce or agglomerate until they are large enough and have sufficient buoyant or weight force to float/sink to the top/bottom of the tank or bioreactor. In a tank or bioreactor, the separator captures and holds particles until they are large enough that their weight causes them to settle out of the host fluid. The acoustophoretic device thus speeds up separation of the particles or droplets from the host fluid.
    Type: Application
    Filed: August 1, 2017
    Publication date: December 14, 2017
    Inventors: Bart Lipkens, Thomas J. Kennedy, III
  • Patent number: 9822333
    Abstract: Acoustic perfusion devices for separating biological cells from other material in a fluid medium are disclosed. The devices include an inlet port, an outlet port, and a collection port that are connected to an acoustic chamber. An ultrasonic transducer creates an acoustic standing wave in the acoustic chamber that permits a continuous flow of fluid to be recovered through the collection port while keeping the biological cells within the acoustic chamber to be returned to the bioreactor from which the fluid medium is being drawn.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: November 21, 2017
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Erik Miller, Benjamin Ross-Johnsrud, Walter M. Presz, Jr., Kedar Chitale, Thomas J. Kennedy, III
  • Patent number: 9796956
    Abstract: An acoustophoresis device made up of modular components is disclosed. Several modules are disclosed herein, including ultrasonic transducer modules, input/output modules, collection well modules, and various connector modules. These permit different systems to be constructed that have appropriate fluid dynamics for separation of particles, such as biological cells, from a fluid.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: October 24, 2017
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Thomas J. Kennedy, III, Jeffrey King, Jason Barnes, Brian McCarthy, Dane Mealey, Erik Miller, Walter M. Presz, Jr., Benjamin Ross-Johnsrud, John Rozembersky
  • Publication number: 20170298316
    Abstract: A series of multi-dimensional acoustic standing waves is set up inside a growth volume of a bioreactor. The acoustic standing waves are used to hold a cell culture in place as a nutrient fluid stream flows through the cell culture. The nutrient fluid stream dislodges some cells from the cell culture, which can then be recovered for cell therapy applications. The cell culture continues to expand and reproduce, permitting continuous recovery of cells from the bioreactor.
    Type: Application
    Filed: June 27, 2017
    Publication date: October 19, 2017
    Inventors: Thomas J. Kennedy, III, Bart Lipkens, Stanley J. Kowalski, III, Anthony E. English
  • Patent number: 9783775
    Abstract: A perfusion bioreactor includes at least one ultrasonic transducer that can acoustically generate a multi-dimensional standing wave. The standing wave can be used to retain cells in the bioreactor, and can also be utilized to dewater or further harvest product from the waste materials produced in a bioreactor.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: October 10, 2017
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Louis Masi, Stanley Kowalski, III, Walter M. Presz, Jr., Jason Dionne, Brian Dutra, Ari Mercado, Thomas J. Kennedy, III, Arthur Martin
  • Publication number: 20170282097
    Abstract: An acoustic standing wave is utilized to separate components from a multi-component fluid, such as oil from an oil-water mixture, in a fluid flow scheme with an acoustophoresis device. For example, the flow scheme and device allows for trapping of the oil as the oil coalesces, agglomerates, and becomes more buoyant than the water.
    Type: Application
    Filed: June 13, 2017
    Publication date: October 5, 2017
    Inventors: Bart Lipkens, Jason Dionne, Ari Mercado, Brian Dutra, Walter M. Presz, JR., Thomas J. Kennedy, III, Louis Masi