Patents by Inventor Thomas J. Lenosky

Thomas J. Lenosky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8027033
    Abstract: The concentration of analytes in a complex mixture can be ascertained by spectroscopic measurement, even if the spectra of substances other than the analyte overlap with that of the analyte. Both independently measured concentrations of the analyte in a training set and of the analyte spectrum are used. Variances in the spectral data attributable to the analyte are isolated from spectral variances from other causes, such as compositional changes associated with different samples that are independent of the analyte. For the special case of noninvasive glucose measurements on the skin of biological organisms, the volume averaged glucose in the sample is predicted from the blood glucose. A test for over-fitting of the data is also described.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: September 27, 2011
    Assignee: C8 Medisensors Inc.
    Inventors: Jan Lipson, Thomas J. Lenosky, Jeffrey M. Bernhardt
  • Patent number: 7961312
    Abstract: The concentration of analytes in a complex mixture can be ascertained by spectroscopic measurement, even if the spectra of substances other than the analyte overlap with that of the analyte. Both independently measured concentrations of the analyte in a training set and of the analyte spectrum are used. Variances in the spectral data attributable to the analyte are isolated from spectral variances from other causes, such as compositional changes associated with different samples that are independent of the analyte. For the special case of noninvasive glucose measurements on the skin of biological organisms, the volume averaged glucose in the sample is predicted from the blood glucose. A test for over-fitting of the data is also described.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: June 14, 2011
    Assignee: C8 Medisensors Inc.
    Inventors: Jan Lipson, Thomas J. Lenosky, Jeffrey M. Bernhardt
  • Publication number: 20110037977
    Abstract: The concentration of analytes in a complex mixture can be ascertained by spectroscopic measurement, even if the spectra of substances other than the analyte overlap with that of the analyte. Both independently measured concentrations of the analyte in a training set and of the analyte spectrum are used. Variances in the spectral data attributable to the analyte are isolated from spectral variances from other causes, such as compositional changes associated with different samples that are independent of the analyte. For the special case of noninvasive glucose measurements on the skin of biological organisms, the volume averaged glucose in the sample is predicted from the blood glucose. A test for over-fitting of the data is also described.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 17, 2011
    Applicant: C8 MEDISENSORS INC.
    Inventors: Jan Lipson, Thomas J. Lenosky, Jeffrey M. Bernhardt
  • Patent number: 7546042
    Abstract: A method of reducing interference in a data stream includes filtering the data stream using a first equalizer to output a first filtered data stream. Also, the data stream is filtered using a second equalizer to create a second filtered data stream. Then, one or more error rates based on the first filtered data stream and the second filtered data stream are determined. Based at least in part on those error rates, a filtered data stream is selected from among the first filtered data stream and the second filtered data stream. A threshold value is determined, and then compared against the selected filtered data stream to generate a data bit.
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: June 9, 2009
    Assignee: Finisar Corporation
    Inventors: Thomas J. Lenosky, Jan Lipson, Giorgio Giaretta
  • Publication number: 20090079977
    Abstract: The concentration of analytes in a complex mixture can be ascertained by spectroscopic measurement, even if the spectra of substances other than the analyte overlap with that of the analyte. Both independently measured concentrations of the analyte in a training set and of the analyte spectrum are used. Variances in the spectral data attributable to the analyte are isolated from spectral variances from other causes, such as compositional changes associated with different samples that are independent of the analyte. For the special case of noninvasive glucose measurements on the skin of biological organisms, the volume averaged glucose in the sample is predicted from the blood glucose. A test for over-fitting of the data is also described.
    Type: Application
    Filed: August 13, 2008
    Publication date: March 26, 2009
    Applicant: C8 MEDISENSORS INC.
    Inventors: Jan Lipson, Thomas J. Lenosky, Jeffrey M. Bernhardt
  • Patent number: 6956917
    Abstract: An optoelectronic assembly for reducing interference in an optical data stream received over a channel includes a converter, an equalizer, a microcontroller, and a comparator. The converter converts the optical data stream to an electrical signal. The equalizer, including a set of filter coefficients, filters the electrical data stream and generates a filtered signal. The comparator compares the filtered signal against a threshold value to generate a set of data values. The microcontroller includes: logic for generating one or more correlation statistics, where each correlation statistic reduces data components of the electrical signal; logic for estimating a channel response reflecting dispersion in the channel, based at least in part on the one or more correlation statistics; logic for determining the set of filter coefficients for the equalizer; and logic for adaptively updating the set of filter coefficients to reflect time-varying changes in the channel response.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: October 18, 2005
    Assignee: Finisar Corporation
    Inventor: Thomas J. Lenosky
  • Patent number: 6898379
    Abstract: An interference-reducing optoelectronic device determines the value of a current data bit in an optical data stream. A receiver receives the optical data stream, which is converted to a series of samples by a D/A converter. A set of adaptive filters, each filter corresponding to a unique possible value for one or more prior data bits, filters the series of samples utilizing variable tap coefficients to generate filtered output values. The variable tap coefficients are at least partially different than the variable tap coefficients of another adaptive filter. Comparators compare the filtered output values against filter-specific adaptive threshold values to generate tentative values for the current data bit. A delay mechanism delays a determined value for the prior data bits, and a selection mechanism determines the value of the current data bit by selecting the tentative value corresponding to the delayed determined value of the prior data bits.
    Type: Grant
    Filed: November 5, 2002
    Date of Patent: May 24, 2005
    Assignee: Finisar Corporation
    Inventors: Thomas J. Lenosky, Jan Lipson, Giorgio Giaretta
  • Patent number: 6872455
    Abstract: A method for enhancing the equilibrium solubility of boron ad indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100° C.; and for indium, a 1% tensile strain at 1100° C., corresponds to an enhancement of the solubility by 200%.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: March 29, 2005
    Assignee: The Regents of the University of California
    Inventors: Babak Sadigh, Thomas J. Lenosky, Tomas Diaz de la Rubia, Martin Giles, Maria-Jose Caturla, Vidvuds Ozolins, Mark Asta, Silva Theiss, Majeed Foad, Andrew Quong
  • Publication number: 20040208266
    Abstract: An optoelectronic assembly for reducing interference in an optical data stream received over a channel includes a converter, an equalizer, a microcontroller, and a comparator. The converter converts the optical data stream to an electrical signal. The equalizer, including a set of filter coefficients, filters the electrical data stream and generates a filtered signal. The comparator compares the filtered signal against a threshold value to generate a set of data values. The microcontroller includes: logic for generating one or more correlation statistics, where each correlation statistic reduces data components of the electrical signal; logic for estimating a channel response reflecting dispersion in the channel, based at least in part on the one or more correlation statistics; logic for determining the set of filter coefficients for the equalizer; and logic for adaptively updating the set of filter coefficients to reflect time-varying changes in the channel response.
    Type: Application
    Filed: April 17, 2003
    Publication date: October 21, 2004
    Inventor: Thomas J. Lenosky
  • Publication number: 20040146722
    Abstract: A method for enhancing the equilibrium solubility of boron ad indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100° C.; and for indium, a 1% tensile strain at 1100° C., corresponds to an enhancement of the solubility by 200%.
    Type: Application
    Filed: July 23, 2003
    Publication date: July 29, 2004
    Applicant: The Regents of the University of California.
    Inventors: Babak Sadigh, Thomas J. Lenosky, Tomas Diaz de la Rubia, Martin Giles, Maria-Jose Caturla, Vidvuds Ozolins, Mark Asta, Silva Theiss, Majeed Foad, Andrew Quong
  • Publication number: 20040086276
    Abstract: A method of reducing interference in a data stream includes filtering the data stream using a first equalizer to output a first filtered data stream. Also, the data stream is filtered using a second equalizer to create a second filtered data stream. Then, one or more error rates based on the first filtered data stream and the second filtered data stream are determined. Based at least in part on those error rates, a filtered data stream is selected from among the first filtered data stream and the second filtered data stream. A threshold value is determined, and then compared against the selected filtered data stream to generate a data bit.
    Type: Application
    Filed: May 29, 2003
    Publication date: May 6, 2004
    Inventors: Thomas J. Lenosky, Jan Lipson, Giorgio Giaretta
  • Publication number: 20040086275
    Abstract: An interference-reducing optoelectronic device determines the value of a current data bit in an optical data stream. A receiver receives the optical data stream, which is converted to a series of samples by a D/A converter. A set of adaptive filters, each filter corresponding to a unique possible value for one or more prior data bits, filters the series of samples utilizing variable tap coefficients to generate filtered output values. The variable tap coefficients are at least partially different than the variable tap coefficients of another adaptive filter. Comparators compare the filtered output values against filter-specific adaptive threshold values to generate tentative values for the current data bit. A delay mechanism delays a determined value for the prior data bits, and a selection mechanism determines the value of the current data bit by selecting the tentative value corresponding to the delayed determined value of the prior data bits.
    Type: Application
    Filed: November 5, 2002
    Publication date: May 6, 2004
    Inventors: Thomas J. Lenosky, Jan Lipson, Giorgio Giaretta
  • Patent number: 6627522
    Abstract: A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: September 30, 2003
    Assignee: The Regents of the University of California
    Inventors: Babak Sadigh, Thomas J. Lenosky, Tomas Diaz De La Rubia
  • Patent number: 6617228
    Abstract: A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100° C.; and for indium, a 1% tensile strain at 1100° C., corresponds to an enhancement of the solubility by 200%.
    Type: Grant
    Filed: September 18, 2002
    Date of Patent: September 9, 2003
    Assignee: The Regents of the University of California
    Inventors: Babak Sadigh, Thomas J. Lenosky, Tomas Diaz de la Rubia, Martin Giles, Maria-Jose Caturla, Vidvuds Ozolins, Mark Asta, Silva Theiss, Majeed Foad, Andrew Quong
  • Publication number: 20030042576
    Abstract: A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g.
    Type: Application
    Filed: September 4, 2001
    Publication date: March 6, 2003
    Applicant: The Regents of the University of California
    Inventors: Babak Sadigh, Thomas J. Lenosky, Tomas Diaz De La Rubia
  • Publication number: 20030042577
    Abstract: A method for enhancing the equilibrium solid solubility of dopants in silicon, germanium and silicon-germanium alloys. The method involves subjecting silicon-based substrate to biaxial or compression strain. It has been determined that boron solubility was largely enhanced (more than 100%) by a compressive bi-axial strain, based on a size-mismatch theory since the boron atoms are smaller than the silicon atoms. It has been found that the large enhancement or mixing properties of dopants in silicon and germanium substrates is primarily governed by their, and to second order by their size-mismatch with the substrate. Further, it has been determined that the dopant solubility enhancement with strain is most effective when the charge and the size-mismatch of the impurity favor the same type of strain. Thus, the solid solubility of small p-type (e.g., boron) as well as large n-type (e.g.
    Type: Application
    Filed: September 5, 2002
    Publication date: March 6, 2003
    Applicant: The Regents of the University of California
    Inventors: Babak Sadigh, Thomas J. Lenosky, Tomas Diaz De La Rubia
  • Publication number: 20030032268
    Abstract: A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100° C.; and for indium, a 1% tensile strain at 1100° C., corresponds to an enhancement of the solubility by 200%.
    Type: Application
    Filed: September 18, 2002
    Publication date: February 13, 2003
    Applicant: The Regents of the University of California
    Inventors: Babak Sadigh, Thomas J. Lenosky, Tomas Diaz de la Rubia, Martin Giles, Maria-Jose Caturla, Vidvuds Ozolins, Mark Asta, Silva Theiss, Majeed Foad, Andrew Quong
  • Patent number: 6498078
    Abstract: A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100° C.; and for indium, a 1% tensile strain at 1100° C., corresponds to an enhancement of the solubility by 200%.
    Type: Grant
    Filed: September 4, 2001
    Date of Patent: December 24, 2002
    Assignee: The Regents of the University of California
    Inventors: Babak Sadigh, Thomas J. Lenosky, Tomas Diaz de la Rubia, Martin Giles, Maria-Jose Caturla, Vidvuds Ozolins, Mark Asta, Silva Theiss, Majeed Foad, Andrew Quong
  • Publication number: 20020055022
    Abstract: A method for enhancing the equilibrium solubility of boron and indium in silicon. The method involves first-principles quantum mechanical calculations to determine the temperature dependence of the equilibrium solubility of two important p-type dopants in silicon, namely boron and indium, under various strain conditions. The equilibrium thermodynamic solubility of size-mismatched impurities, such as boron and indium in silicon, can be raised significantly if the silicon substrate is strained appropriately. For example, for boron, a 1% compressive strain raises the equilibrium solubility by 100% at 1100° C.; and for indium, a 1% tensile strain at 1100° C., corresponds to an enhancement of the solubility by 200%.
    Type: Application
    Filed: September 4, 2001
    Publication date: May 9, 2002
    Applicant: The Regents of the University of California
    Inventors: Babak Sadigh, Thomas J. Lenosky, Tomas Diaz de La Rubia, Martin Giles, Maria-Jose Caturla, Vidvuds Ozolins, Mark Asta, Silva Theiss, Majeed Foad, Andrew Quong