Patents by Inventor Thomas J. Metzler

Thomas J. Metzler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11894164
    Abstract: A stretchable conductor includes a substrate with a first major surface, wherein the substrate is an elastomeric material. An elongate wire is on the first major surface of the substrate; the wire includes a first end and a second end, and further includes at least one arcuate region between the first end and the second end. At least one portion of the arcuate region of the wire in the region has a first surface area portion embedded in the surface of the substrate and a second surface area portion unembedded on the substrate and exposed in an amount sufficient to render at least an area of the substrate in the region electrically conductive. The unembedded second surface portion of the arcuate region may lie above or below a plane of the substrate. Composite articles including a stretchable conductor in durable electrical contact with a conductive fabric are also disclosed.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: February 6, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPNAY
    Inventors: Ankit Mahajan, James Zhu, Saagar A. Shah, Mikhail L. Pekurovsky, Vivek Krishnan, Kevin T. Reddy, Christopher B. Walker, Jr., Michael A. Kropp, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Roger W. Barton
  • Publication number: 20230364851
    Abstract: A method of thermoforming is described. The method comprises providing a multilayer polymer film comprising at least one first thermoplastic polymer layer having a glass transition temperature (Tg) greater than 60° C. and at least one second polymer layer; and thermoforming the multilayer polymer film into a three-dimensional shape. The second polymer layer can be characterized by one or more properties selected from i) a Tg ranging from 20 to 70° C.; ii) a molecular weight between crosslinks of no greater than 20,000 g/mole; and iii) sufficient crosslinking such that the second polymer layer lacks a thermal melt or softening transition at a temperature up to the decomposition temperature of the second polymer layer. Also described are multilayer films and articles, such as orthodontic aligner and retainer trays.
    Type: Application
    Filed: October 26, 2021
    Publication date: November 16, 2023
    Inventors: Anthony F. Schultz, Ta-Hua Yu, Duane D. Fansler, Karl J.L. Geisler, Bruce R. Broyles, Bhaskar V. Velamakanni, THomas J. Metzler, Jonathan E. Janoski, Richard J. Pokomy, Mark T. Gibson, Ahmed S. Abuelyaman
  • Patent number: 11628541
    Abstract: A bonded abrasive wheel is disclosed comprising a plurality of abrasive particles disposed in a binder, a first grinding surface, a second surface opposing the first grinding surface, and an outer circumference. The wheel comprises a rotational axis extending through a central hub and a circuit configured as a Radio Frequency Identification (RFID) unit coupled to the abrasive wheel. The circuit comprises an antenna configured to communicate with one or more external devices and comprising a first end and a second end, wherein antenna has a radius of curvature about an axis along at least a portion thereof such that the first end is disposed adjacent to but is spaced from the second end, and an integrated circuit (IC) operably coupled to the antenna and configured to store at least a first data.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: April 18, 2023
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph B. Eckel, Nicholas T. Gabriel, Ankit Mahajan, Mikhail L. Pekurovsky, Kara A. Meyers, Thomas J. Metzler, Saagar A. Shah
  • Publication number: 20230013219
    Abstract: A method for making a dental appliance configured to position at least one tooth of a patient includes printing a hardenable liquid resin composition on a major surface of a polymeric material to form a pattern of discrete unhardened liquid regions thereon; at least partially hardening the unhardened liquid regions to form a corresponding array of structures on the major surface of the polymeric material, wherein the structures have a characteristic cross-sectional dimension of about 25 microns to about 1 mm, and a feature spacing of about 100 microns to about 2000 microns; and forming a plurality of cavities in the polymeric material to form the dental appliance including an arrangement of cavities configured to receive one or more teeth.
    Type: Application
    Filed: December 29, 2020
    Publication date: January 19, 2023
    Inventors: Bhaskar V. Velamakanni, Kevin T. Reddy, Matthew S. Stay, Matthew R.D. Smith, Kevin W. Gotrik, Mikhail L. Pekurovsky, Scott J. Jones, Ta-Hua Yu, Thomas J. Metzler
  • Patent number: 11503720
    Abstract: Flexible devices including conductive traces with enhanced stretchability, and methods of making and using the same are provided. The circuit die is disposed on a flexible substrate. Electrically conductive traces are formed in channels on the flexible substrate to electrically contact with contact pads of the circuit die. A first polymer liquid flows in the channels to cover a free surface of the traces. The circuit die can also be surrounded by a curing product of a second polymer liquid.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: November 15, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Saagar Shah, Mikhail L. Pekurovsky, Ankit Mahajan, Lyudmila A. Pekurovsky, Jessica Chiu, Jeremy K. Larsen, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Richard J. Pokorny, Benjamin R. Coonce, Chad M. Amb, Thomas P. Klun
  • Patent number: 11446918
    Abstract: A method of applying a pattern to a nonplanar surface. A stamp has a major surface with pattern elements having a lateral dimension of greater than 0 and less than about 5 microns. The major surface of the stamp has a functionalizing molecule with a functional group selected to chemically bind to the nonplanar surface. The stamp is positioned to initiate rolling contact with the nonplanar surface, and contacts the nonplanar surface to form a self-assembled monolayer (SAM) of the functionalizing material thereon and impart the arrangement of pattern elements thereto. The major surface of the stamp is translated with respect to the nonplanar surface such that: a contact pressure is controlled at an interface between the stamping surfaces and the nonplanar surface, and a contact force at the interface is allowed to vary while the stamping surfaces and the nonplanar surface are in contact with each other.
    Type: Grant
    Filed: December 26, 2018
    Date of Patent: September 20, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: James Zhu, Karl K. Stensvad, Daniel M. Lentz, Thomas J. Metzler, Moses M. David
  • Publication number: 20220113457
    Abstract: The disclosed patterned wavelength-selective material and process for making the patterned wavelength-selective material uses patterned applied adhesive and a structurally weak wavelength-selective material that includes portions that contact the adhesive and break to remain in contact with the adhesive. In one embodiment, the wavelength-selective material comprises an array of sections with cuts at least partially through a wavelength-selective film at each section secured to the adhesive. In another embodiment, the wavelength-selective film comprises a transfer stack of layers.
    Type: Application
    Filed: July 23, 2019
    Publication date: April 14, 2022
    Inventors: Kui CHEN-HO, Douglas S. DUNN, Tien Yi T.H. WHITING, Bryan T. WHITING, Taylor J. KOBE, Anthony F. SCHULTZ, Duane D. FANSLER, Jonah SHAVER, John A. WHEATLEY, Susannah C. CLEAR, Daniel J. THEIS, John T. STRAND, Thomas J. METZLER, Kevin W. GOTRIK, Scott J. JONES
  • Publication number: 20220111490
    Abstract: A bonded abrasive wheel is disclosed comprising a plurality of abrasive particles disposed in a binder, a first grinding surface, a second surface opposing the first grinding surface, and an outer circumference. The wheel comprises a rotational axis extending through a central hub and a circuit configured as a Radio Frequency Identification (RFID) unit coupled to the abrasive wheel. The circuit comprises an antenna configured to communicate with one or more external devices and comprising a first end and a second end, wherein antenna has a radius of curvature about an axis along at least a portion thereof such that the first end is disposed adjacent to but is spaced from the second end, and an integrated circuit (IC) operably coupled to the antenna and configured to store at least a first data.
    Type: Application
    Filed: December 17, 2021
    Publication date: April 14, 2022
    Inventors: Joseph B. Eckel, Nicholas T. Gabriel, Ankit Mahajan, Mikhail L. Pekurovsky, Kara A. Meyers, Thomas J. Metzler, Saagar A. Shah
  • Patent number: 11279859
    Abstract: Methods of passivating an adhesive via printing an ink onto a release liner, and adhesive articles or products made by the same are provided. An ink pattern is printed onto a release liner to form a pattern of features. The features are at least partially embedded in an adhesive layer such that when the release liner is peeled from the adhesive layer, the passivation features remain with the layer of adhesive to form selected areas having adjusted adhesive functionality. Articles including the passivated adhesive on a release liner are also disclosed.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: March 22, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Matthew R. D. Smith, Matthew S. Stay, Mikhail L. Pekurovsky, Daniel J. Theis, Thomas J. Metzler, Shawn C. Dodds
  • Publication number: 20220048286
    Abstract: Methods, apparatuses and systems for printing an ink pattern on a moving web via die cutting are provided. A die roll including an inked pattern of die blades contacts a substrate to cut or cleave the substrate surface. While the die blades withdraw from the substrate, at least some of the ink transfers from the die blades to the cut substrate to form an ink pattern.
    Type: Application
    Filed: October 16, 2019
    Publication date: February 17, 2022
    Inventors: Thomas J. Metzler, Kara A. Meyers, Saagar A. Shah, Mikhail L. Pekurovsky, Matthew S. Stay, Shawn C. Dodds, Kevin T. Reddy, John T. Strand, Daniel J. Theis, Jeremy O. Swanson, Daniel M. Lentz
  • Patent number: 11229987
    Abstract: A bonded abrasive wheel is disclosed comprising a plurality of abrasive particles disposed in a binder, a first grinding surface, a second surface opposing the first grinding surface, and an outer circumference. The wheel comprises a rotational axis extending through a central hub and a circuit configured as a Radio Frequency Identification (RFID) unit coupled to the abrasive wheel. The circuit comprises an antenna configured to communicate with one or more external devices and comprising a first end and a second end, wherein antenna has a radius of curvature about an axis along at least a portion thereof such that the first end is disposed adjacent to but is spaced from the second end, and an integrated circuit (IC) operably coupled to the antenna and configured to store at least a first data.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: January 25, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Joseph B. Eckel, Nicholas T. Gabriel, Ankit Mahajan, Mikhail L. Pekurovsky, Kara A. Meyers, Thomas J. Metzler, Saagar A. Shah
  • Publication number: 20210379887
    Abstract: A printing system is provided. The printing system (300) includes a printing roll (310) having a rigid printing pattern (312) on a surface thereof configured to receive an ink material (330); and an inking roll (320) positioned adjacent to the printing roll. The inking roll includes an elastically deformable surface and a number of cells (324) disposed on the elastically deformable surface. A method of printing is also provided. The method includes (a) inking at least a portion of a rigid printing pattern (312) on a surface of a printing roll (310) by contacting the rigid printing pattern with an inking roll (320); and (b) contacting the rigid printing pattern with a substrate (350), transferring the ink material from the rigid printing pattern to a surface of the substrate. Printing systems and methods can achieve higher printing feature resolutions than typically achievable via flexographic printing.
    Type: Application
    Filed: October 14, 2019
    Publication date: December 9, 2021
    Inventors: Matthew R. D. Smith, Shawn C. Dodds, Mikhail L. Pekurovsky, Thomas J. Metzler, Matthew S. Stay, Kara A. Meyers, Samad Javid
  • Publication number: 20210325585
    Abstract: The disclosed patterned wavelength-selective material and process for making the patterned wavelength-selective material uses selectively located barriers to the adhesive regions. A structurally weak wavelength-selective material includes portions that contact the adhesive regions and break to remain in contact with the adhesive. The wavelength-selective material does not contact the adhesive regions covered by the barrier and is removed leaving a wavelength-selective film in a pattern at the adhesive regions.
    Type: Application
    Filed: July 19, 2019
    Publication date: October 21, 2021
    Inventors: Kui CHEN-HO, Douglas S. DUNN, Matthew S. STAY, Daniel J. THEIS, John T. STRAND, Shawn C. DODDS, Thomas J. METZLER, Kevin W. GOTRIK, Scott J. JONES
  • Publication number: 20210319955
    Abstract: Ultrathin and flexible electrical devices including circuit dies such as, for example, a capacitor chip, a resistor chip, and/or an inductor chip, and methods of making and using the same are provided. Circuit dies are attached to a major surface of a flexible substrate having channels Electrically conductive traces are formed in the channels, self-aligned with the circuit dies, and in direct contact with the bottom surface of the circuit dies.
    Type: Application
    Filed: May 16, 2019
    Publication date: October 14, 2021
    Inventors: Ankit Mahajan, Saagar A. Shah, Mikhail L. Pekurovsky, Thomas J. Metzler, Kayla C. Niccum, Eric A. Vandre, Aniruddha Upadhye, Robert R. Owings, Jeremy K. Larsen, Zohaib Hameed
  • Publication number: 20210280337
    Abstract: A stretchable conductor includes a substrate with a first major surface, wherein the substrate is an elastomeric material. An elongate wire is on the first major surface of the substrate; the wire includes a first end and a second end, and further includes at least one arcuate region between the first end and the second end. At least one portion of the arcuate region of the wire in the region has a first surface area portion embedded in the surface of the substrate and a second surface area portion unembedded on the substrate and exposed in an amount sufficient to render at least an area of the substrate in the region electrically conductive. The unembedded second surface portion of the arcuate region may lie above or below a plane of the substrate. Composite articles including a stretchable conductor in durable electrical contact with a conductive fabric are also disclosed.
    Type: Application
    Filed: September 23, 2020
    Publication date: September 9, 2021
    Inventors: Ankit Mahajan, James Zhu, Saagar A. Shah, Mikhail L. Pekurovsky, Vivek Krishnan, Kevin T. Reddy, Christopher B. Walker, JR., Michael A. Kropp, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Roger W. Barton
  • Patent number: 11114599
    Abstract: Electronic devices including a layer of polymeric material and solid semiconductor dies partially embedded in the layer are provided. The dies have first ends projecting away from the first major surface of the layer. The electronic devices can be formed by sinking the first ends of the dies into a major surface of a liner. A flowable polymeric material is filled into the space between the dies and solidified to form the layer of polymeric material. The first ends of the dies are exposed by delaminating the liner from the first ends of the dies. Electrical conductors are provided on the layer to connect the first ends of the dies.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: September 7, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ankit Mahajan, Mikhail L. Pekurovsky, Matthew S. Stay, Shawn C. Dodds, Thomas J. Metzler, Matthew R. D. Smith, Saagar A. Shah, Jae Yong Lee, James F. Poch, Roger W. Barton
  • Publication number: 20210260901
    Abstract: A method of applying a pattern to a nonplanar surface with a radius of curvature. A stamp with a major surface has a relief pattern of pattern elements extending away from a base surface. Each pattern element has a stamping surface with a lateral dimension 0 to 5 microns. An ink applied on the stamping surface includes a functionalizing molecule with a functional group that chemically binds to the nonplanar surface. The stamp is positioned to initiate rolling contact between the nonplanar surface and the major surface of the stamp. The stamping surface of the pattern elements contacts the nonplanar surface to form a self-assembled monolayer of the functionalizing material on the nonplanar surface and impart the arrangement of pattern elements. A relative position of the stamping surface is controlled with respect to the nonplanar surface while the major surface of the stamp contacts the nonplanar surface.
    Type: Application
    Filed: June 21, 2019
    Publication date: August 26, 2021
    Inventors: James Zhu, Karl K. Stensvad, Daniel M. Lentz, Thomas J. Metzler, Moses M. David, Jennifer A. Timm, Terrance A. Pechacek
  • Patent number: 11086056
    Abstract: The present disclosure relates to micro-optical assemblies containing at least one optical element adhered to a receptor substrate, e.g. a transparent receptor substrate, the receptor substrate contains at least one graphics layer. The micro-optical assemblies include both functional micro-optical structures that can alter, for example, incident light, and a graphic layer, which includes at least one graphic, e.g. a graphic design, which may include color, patterns, imagery, indicia and the like. The combination of the micro-optical elements with the graphic of the graphics layer can provide unique light altering assemblies that have graphic designs that may be functional, e.g. to display a message, and/or have aesthetic value. The micro-optical assemblies of the present disclosure are useful in a variety of applications which include, but are not limited to, display and graphics applications and architectural glass applications.
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: August 10, 2021
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin B. Wolk, Thomas J. Metzler, Samuel J. Carpenter, Denis Terzic, Mitchell T. Nommensen, Suman K. Patel, Mikhail L. Pekurovsky, Donald G. Peterson, Terry O. Collier
  • Publication number: 20210235586
    Abstract: Processes of making an electrical jumper (120) for electrical devices are provided. A micro-replication stamp (300) is used to press a layer of curable material (124) on a circuit substrate (102) to make patterned features. A conductive liquid (230) is disposed into the patterned features to make electrically conductive traces (126) that pass over a circuitry (110) and connect electrical contacts (122A, 122B). In some cases, the stamp (300) has a standoff (310).
    Type: Application
    Filed: March 27, 2019
    Publication date: July 29, 2021
    Inventors: Teresa M. Goeddel, Ankit Mahajan, Mikhail L. Pekurovsky, Thomas J. Metzler, Saagar A. Shah, Kara A. Meyers, Jonathan W. Kemling, Jeremy K. Larsen
  • Publication number: 20210212216
    Abstract: Flexible devices including conductive traces with enhanced stretchability, and methods of making and using the same are provided. The circuit die is disposed on a flexible substrate. Electrically conductive traces are formed in channels on the flexible substrate to electrically contact with contact pads of the circuit die. A first polymer liquid flows in the channels to cover a free surface of the traces. The circuit die can also be surrounded by a curing product of a second polymer liquid.
    Type: Application
    Filed: September 12, 2019
    Publication date: July 8, 2021
    Inventors: Saagar Shah, Mikhail L. Pekurovsky, Ankit Mahajan, Lyudmila A. Pekurovsky, Jessica Chiu, Jeremy K. Larsen, Kara A. Meyers, Teresa M. Goeddel, Thomas J. Metzler, Jonathan W. Kemling, Richard J. Pokorny, Benjamin R. Coonce, Chad M. Amb, Thomas P. Klun