Patents by Inventor Thomas J. Onofrey

Thomas J. Onofrey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8288155
    Abstract: Methods of addressing a biomolecule to a selectively addressable electrode are described. A permeation layer overlying a plurality of selectively addressable electrodes is provided. The permeation layer includes a reactive group that is adapted to bond to a biomolecule and that requires activation through a chemical transformation before bonding to the biomolecule. At least one selectively addressable electrode is biased such that a pH change occurs in an overlying solution of the at least one selectively addressable electrode. The reactive group in a portion of the permeation layer above the at least one selectively addressable electrode is then chemically transformed to an activated reactive group as a result of the pH change. A biomolecule is then bound to the permeation layer overlying the at least one selectively addressable electrode through the activated reactive group.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: October 16, 2012
    Assignee: Gamida for Life B.V.
    Inventors: John R. Havens, Thomas J. Onofrey, Charles H. Greef, Gregory J. Kevorkian, Jain Krotz, Kristie L. Lykstad, Daniel E. Raymond, Howard R. Reese, Regina Rooney, John J. Scott
  • Patent number: 8067581
    Abstract: Compounds relating to attachment chemistries for binding biomolecules to a substrate surface are described. These include compounds of the following structure: The biomolecule includes a single nucleic acid, oligonucleotides, polynucleotides, DNAs, RNAs, proteins, peptides, enzymes, antibodies, CNAs (cyclohexyl nucleic acids), p-MeNAs (methyl or methoxy phosphate nucleic acids), peptide nucleic acids (PNAs), and pyranosyl RNAs (p-RNAs).
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: November 29, 2011
    Assignee: Sanofi-Aventis S.A.
    Inventors: Markus Schweitzer, Norbert Windhab, John R. Havens, Thomas J. Onofrey, Charles Greef, Daguang Wang
  • Publication number: 20110201080
    Abstract: Compounds relating to attachment chemistries for binding biomolecules to a substrate surface are described. These include compounds of the following structure: The biomolecule includes a single nucleic acid, oligonucleotides, polynucleotides, DNAs, RNAs, proteins, peptides, enzymes, antibodies, CNAs (cyclohexyl nucleic acids), p-MeNAs (methyl or methoxy phosphate nucleic acids), peptide nucleic acids (PNAs), and pyranosyl RNAs (p-RNAs).
    Type: Application
    Filed: November 15, 2010
    Publication date: August 18, 2011
    Inventors: Markus Schweitzer, Norbert Windhab, John R. Havens, Thomas J. Onofrey, Charles Greef, Daguang Wang
  • Patent number: 7833715
    Abstract: Methods of binding biomolecules to a substrate are provided that include contacting the biomolecule with a branched linking moiety to form a branched linking structure. The branched linking structure is then contacted with a binding moiety on the substrate to form a coupled substrate binding structure, thereby binding the biomolecule to the substrate. The biomolecule may contain a Lewis base or a nucleophile to react with a Lewis acid or electrophile in the branched linking moiety. Alternatively, the biomolecule may contain a Lewis acid or electrophile that can react with a Lewis base or nucleophile in the branched linking moiety. Additionally, the biomolecule can be bound to the substrate through a covalent or non-covalent bond.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: November 16, 2010
    Assignee: Nanogen Recognomics GmbH
    Inventors: Markus Schweitzer, Norbert Windhab, John R. Havens, Thomas J. Onofrey, Charles Greef, Daguang Wang
  • Publication number: 20100286377
    Abstract: Methods of binding biomolecules to a substrate are provided that include contacting the biomolecule with a branched linking moiety to form a branched linking structure. The branched linking structure is then contacted with a binding moiety on the substrate to form a coupled substrate binding structure, thereby binding the biomolecule to the substrate. The biomolecule may contain a Lewis base or a nucleophile to react with a Lewis acid or electrophile in the branched linking moiety. Alternatively, the biomolecule may contain a Lewis acid or electrophile that can react with a Lewis base or nucleophile in the branched linking moiety. Additionally, the biomolecule can be bound to the substrate through a covalent or non-covalent bond.
    Type: Application
    Filed: January 18, 2007
    Publication date: November 11, 2010
    Inventors: Markus Schweitzer, Norbert Windhab, John R. Havens, Thomas J. Onofrey, Charles Greef, Daguang Wang
  • Patent number: 7597932
    Abstract: The present invention provides improved synthetic polymer hydrogel permeation layers for use on active electronic matrix devices for biological assays. The present invention includes methods for forming a permeation layer on an array of microelectrodes including the steps of attaching a linker to the surface of the array and providing a polymerization solution that includes a porogen. The surface of the array is then contacted with the polymerization solution and the polymerization solution is then polymerized on the surface of the array to form a permeation layer that is attached o the surface of the array through the linker. The porogen is then removed from the permeation layer, thereby creating void spaces in the permeation layer.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: October 6, 2009
    Assignee: Nanogen, Inc.
    Inventors: Jainamma Krotz, Daniel Smolko, Howard R. Reese, Thomas J. Onofrey, Daguang Wang, Theodore M. Winger, John R. Havens
  • Publication number: 20090069198
    Abstract: Methods of addressing a biomolecule to a selectively addressable electrode are described. A permeation layer overlying a plurality of selectively addressable electrodes is provided. The permeation layer includes a reactive group that is adapted to bond to a biomolecule and that requires activation through a chemical transformation before bonding to the biomolecule. At least one selectively addressable electrode is biased such that a pH change occurs in an overlying solution of the at least one selectively addressable electrode. The reactive group in a portion of the permeation layer above the at least one selectively addressable electrode is then chemically transformed to an activated reactive group as a result of the pH change. A biomolecule is then bound to the permeation layer overlying the at least one selectively addressable electrode through the activated reactive group.
    Type: Application
    Filed: July 13, 2007
    Publication date: March 12, 2009
    Inventors: John R. Havens, Thomas J. Onofrey, Charles H. Greef, Gregory J. Kevorkian, Jain Krotz, Kristie L. Lykstad, Daniel E. Raymond, Howard R. Reese, Regina Rooney, John J. Scott
  • Patent number: 7270850
    Abstract: The present invention provides improved synthetic polymer hydrogel permeation layers for use on active electronic matrix devices for biological assays. The present invention includes methods for forming a permeation layer on an array of microelectrodes including the steps of attaching a linker to the surface of the array by treating the surface with a linker by vapor deposition and providing a polymerization solution that includes at least one monomer having a polymerizable moiety, a modified streptavidin, a surfactant or porogen, and a cross-linking agent. The surface of the array is then contacted with the polymerization solution and the polymerization solution is then polymerized on the surface of the array to form a permeation layer that is attached o the surface of the array through the linker.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: September 18, 2007
    Assignee: Nanogen, Inc.
    Inventors: Jainamma Krotz, Daniel J. Smolko, Howard R. Reese, Thomas J. Onofrey, Daguang Wang, Theodore M. Winger, John R. Havens
  • Patent number: 7186813
    Abstract: Biomolecules are provided having multiple binding sites for attachment to a substrate surface. The multiple attachment sites may be produced directly on the biomolecule or through use of branched phosphoramidite moieties that can be added in multiple to form dendritic structures which can in turn provide attachment sites for substrate binding moieties. Substrate binding moieties may include noncovalent binding moieties. For covalent binding moieties oligonucleotides containing hydrazides are provided. These hydrazides can be introduced via protected building blocks such as phosphoramidites or via building blocks containing precursor forms of such hydrazides.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: March 6, 2007
    Assignee: Nanogen Recognomics GmbH
    Inventors: Markus Schweitzer, Norbert Windhab, John R. Havens, Thomas J. Onofrey, Charles Greef, Daguang Wang
  • Patent number: 7129229
    Abstract: This invention relates to attachment chemistries for binding macromolecules to a substrate surface or to other conjugation targets. More particularly, this invention relates to attachment chemistries involving branched or linear structures having one or more hydrazide attachment moieties for binding the macromolecules to a substrate surface, or for other conjugation reactions. Novel modifying reagents are provided for the introduction of protected hydrazide attachment moieties or precursor forms of such hydrazides to the macromolecule, either as a single hydrazide or as multiple hydrazides.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: October 31, 2006
    Assignee: Nanogen Recognomics GmbH
    Inventors: Stefan Raddatz, Jochen Müller-Ibeler, Markus Schweitzer, Christoph Brücher, Norbert Windhab, John R. Havens, Thomas J. Onofrey, Charles H. Greef, Daguang Wang
  • Patent number: 6960298
    Abstract: The present invention provides improved synthetic polymer hydrogel permeation layers for use on active electronic matrix devices for biological assays. The permeation layers have a defined porous character, with mesopores in a size range between about 100 nanometers and about 1000 nanometers, and may also have micropores in the micrometer size range. The mesoporous synthetic hydrogel permeation layers demonstrate improved signal intensity and linearity characteristics as compared to nanoporous synthetic hydrogel permeation layers on active electronic matrix devices. In addition, the present invention also provides synthetic polymer hydrogel permeation layers which contain copolymerized attachment sites for nucleic acid probes or other biomolecules.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: November 1, 2005
    Assignee: Nanogen, Inc.
    Inventors: Jainamma Krotz, Daniel Smolko, Howard R. Reese, Thomas J. Onofrey, Daguang Wang, Theodore M. Winger, John R. Havens
  • Patent number: 6838053
    Abstract: Electronically addressable microchips having covalently bound permeation layers and methods of making such covalently bonded permeation layers to microchips are provided. The covalent bonding is derived from combining the use of electrodes with silane derivatives. Such chemistry provides the ability to apply an electronic bias to the electrodes of the microchip while preventing permeation layer delaminating from the electrode surface.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: January 4, 2005
    Assignee: Nanogen, Inc.
    Inventors: Havens R. John, Theodore M. Winger, Jain Krotz, Smolko Dan, Thomas J. Onofrey
  • Publication number: 20040087807
    Abstract: This invention relates to attachment chemistries for binding macromolecules to a substrate surface or to other conjugation targets. More particularly, this invention relates to attachment chemistries involving branched or linear structures having one or more hydrazide attachment moieties for binding the macromolecules to a substrate surface, or for other conjugation reactions. Novel modifying reagents are provided for the introduction of protected hydrazide attachment moieties or precursor forms of such hydrazides to the macromolecule, either as a single hydrazide or as multiple hydrazides.
    Type: Application
    Filed: August 15, 2003
    Publication date: May 6, 2004
    Inventors: Stefan Raddatz, Jochen Muller-Ibeler, Markus Schweitzer, Christoph Brucher, Norbert Windhab, John r. Havens, Thomas J. Onofrey, Charles H. Greef, Daguang Wang
  • Publication number: 20030146145
    Abstract: The present invention provides improved synthetic polymer hydrogel permeation layers for use on active electronic matrix devices for biological assays. The permeation layers have a defined porous character, with mesopores in a size range between about 100 nanometers and about 1000 nanometers, and may also have micropores in the micrometer size range. The mesoporous synthetic hydrogel permeation layers demonstrate improved signal intensity and linearity characteristics as compared to nanoporous synthetic hydrogel permeation layers on active electronic matrix devices. In addition, the present invention also provides synthetic polymer hydrogel permeation layers which contain copolymerized attachment sites for nucleic acid probes or other biomolecules.
    Type: Application
    Filed: December 10, 2001
    Publication date: August 7, 2003
    Inventors: Jainamma Krotz, Daniel D. Smolko, Howard R. Reese, Thomas J. Onofrey, Daguang Wang, Theodore M. Winger, John R. Havens
  • Publication number: 20020015993
    Abstract: Electronically addressable microchips having covalently bound permeation layers and methods of making such covalently bonded permeation layers to microchips are provided. The covalent bonding is derived from combining the use of electrodes with silane derivatives. Such chemistry provides the ability to apply an electronic bias to the electrodes of the microchip while preventing permeation layer delaminating from the electrode surface.
    Type: Application
    Filed: August 3, 2001
    Publication date: February 7, 2002
    Inventors: Havens R. John, Theodore M. Winger, Jain Krotz, Smolko Dan, Thomas J. Onofrey
  • Patent number: 6303082
    Abstract: Electronically addressable microchips having covalently bound permeation layers and methods of making such covalently bonded permeation layers to microchips are provided. The covalent bonding is derived from combining the use of electrodes with silane derivatives. Such chemistry provides the ability to apply an electronic bias to the electrodes of the microchip while preventing permeation layer delaminating from the electrode surface.
    Type: Grant
    Filed: December 15, 1999
    Date of Patent: October 16, 2001
    Assignee: Nanogen, Inc.
    Inventors: Havens R. John, Theodore M. Winger, Jain Krotz, Smolko Dan, Thomas J. Onofrey