Patents by Inventor Thomas J. Ward

Thomas J. Ward has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7776274
    Abstract: The disclosure relates to a cassette, frame and mold for holding a tissue sample during an embedding and mircotoming process, and related methods. The cassette is sectionable in a microtome and includes a body with a bottom wall and a plurality of side walls. First and second side walls are generally V-shaped to present an apex of the ā€œVā€ to the microtome blade. A lid of the cassette is stiffer than the bottom wall of the cassette to assist with positioning the tissue sample. The side walls of the cassette are perforated so as to significantly reduce the amount of cassette material that must be cut by the microtome blade. In one embodiment, to additionally reduce blade wear the ribs on one side wall are offset lengthwise relative to the ribs on an opposite side wall. An upper flange of the cassette includes depressions configured to register with detents in the frame.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: August 17, 2010
    Assignee: Biopath Automation, L.L.C.
    Inventors: Warren P. Williamson, IV, Craig B. Berky, Stephen P. Whitlatch, Thomas J. Ward
  • Publication number: 20100129859
    Abstract: An automated machine for handling and embedding tissue samples contained on microtome sectionable supports. The machine includes an input member configured to hold a plurality of the microtome sectionable supports prior to a tissue embedding operation. An output member is configured to hold a plurality of the microtome sectionable supports after the tissue embedding operation. A cooling unit is configured to hold at least one of the microtome sectionable supports during the tissue embedding operation. A motorized carrier assembly is mounted for movement and configured to hold at least one of the microtome sectionable supports. The carrier assembly moves the support from the input member to the cooling unit and, finally, to the output member. A dispensing device dispenses an embedding material onto the microtome sectionable support and at least one tissue sample carried by the microtome sectionable support during the embedding operation.
    Type: Application
    Filed: January 29, 2010
    Publication date: May 27, 2010
    Applicant: BIOPATH AUTOMATION, L.L.C.
    Inventors: Douglas P. Allen, Dominic P. DiNovo, Matthew J. Huddleston, Kenneth E. Hughes, George A. Keller, Keith A. Kuisick, Rebeccah P. Quam, Cecil R. Robinson, Jonathan E. Turner, Ernest D. VanHoose, Thomas J. Ward, Warren P. Williamson, IV
  • Patent number: 7722810
    Abstract: An automated machine for handling and embedding tissue samples contained on microtome sectionable supports. The machine includes an input member configured to hold a plurality of the microtome sectionable supports prior to a tissue embedding operation. An output member is configured to hold a plurality of the microtome sectionable supports after the tissue embedding operation. A cooling unit is configured to hold at least one of the microtome sectionable supports during the tissue embedding operation. A motorized carrier assembly is mounted for movement and configured to hold at least one of the microtome sectionable supports. The carrier assembly moves the support from the input member to the cooling unit and, finally, to the output member. A dispensing device dispenses an embedding material onto the microtome sectionable support and at least one tissue sample carried by the microtome sectionable support during the embedding operation.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: May 25, 2010
    Assignee: Biopath Automation, LLC
    Inventors: Douglas P. Allen, Dominic P. DiNovo, Matthew J. Huddleston, Kenneth E. Hughes, George A. Keller, Keith A. Kuisick, Rebeccah P. Quam, Cecil R. Robinson, Jonathan E. Turner, Ernest D. VanHoose, Thomas J. Ward, Warren P. Williamson, IV
  • Patent number: 7722642
    Abstract: Wire fasteners having legs with lengths that can be one hundred times the width of the fastener are used to secure items, such as prosthesis valves to a patient during minimally invasive surgery. The fasteners are manipulated into position and then are immobilized by means of the legs thereof for tensioning, cutting and forming in situ. The fasteners are manipulated, tensioned and formed from the leg end of the fasteners. Tools for initially placing the fasteners and for immobilizing, tensioning, cutting and bending the fastener legs are disclosed. Once the fasteners are initially placed, the prosthesis is placed on the long legs of the placed fasteners and is guided into position on the legs. Once the prosthesis is in position, the legs of the fasteners are immobilized, tensioned, cut and bent into staple-like shapes to secure the prosthesis to the patient. A method for carrying out the procedure using the long fastener is also disclosed.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: May 25, 2010
    Assignee: Medtronic, Inc.
    Inventors: Warren P. Williamson, IV, Paul A. Spence, George A. Keller, Cecil R. Robinson, Thomas J. Ward
  • Patent number: 7708759
    Abstract: Apparatus and methods for repairing damaged tendons or ligaments. Various repair apparatus include an elongate tensile member and a pair of anchor structures connected for movement along the tensile member on either side of a repair site, such as a tear or laceration. The anchor structures may take many forms, and may include barbed, helical, and crimp-type anchors. In the preferred embodiments, at least one anchor structure is movable along the elongate tensile member to assist with adjusting a tendon segment to an appropriate repair position and the anchor structure or structures are then lockable onto the elongate tensile member to assist with affixing the tendon at the repair position. Tendon-to-bone repair apparatus and methods are also disclosed employing similar concepts. Tendon retrieval devices include helical members for rotating into a tendon end and subsequently moving the tendon to an appropriate operating position.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: May 4, 2010
    Assignee: Tendon Technology, Ltd.
    Inventors: Lawrence M. Lubbers, Kenneth E. Hughes, Carl R. Coleman, Warren P. Williamson, IV, Craig B. Berky, Thomas J. Ward
  • Publication number: 20100049320
    Abstract: Apparatus and methods for repairing damaged tendons or ligaments. Various repair apparatus include an elongate tensile member and a pair of anchor assemblies connected for movement along the tensile member on either side of a repair site, such as a tear or laceration. The anchor assemblies or structures may take many forms, and may include barbed, helical, and crimp-type anchors. In the preferred embodiments, at least one anchor structure is movable along the elongate tensile member to assist with adjusting a tendon segment to an appropriate repair position and the anchor structure or structures are then lockable onto the elongate tensile member to assist with affixing the tendon at the repair position. Tendon and/or ligament-to-bone repair apparatus and methods employ similar concepts.
    Type: Application
    Filed: October 27, 2009
    Publication date: February 25, 2010
    Applicants: TENDON TECHNOLOGY, LTD., ORTHEON MEDICAL L.L.C.
    Inventors: Lawrence M. Lubbers, Kenneth E. Hughes, Carl R. Coleman, Warren P. Williamson, IV, Craig B. Berky, Thomas J. Ward, Matthew J. Huddleston, Mark A. Goldin, William J. Christy, Perry DeFazio, Brian Scott Schumacher, Terence Lee Murphy, Nickola Symone Lewis, Jeremy Jarrett, Joseph E. Young
  • Patent number: 7611521
    Abstract: Apparatus and methods for repairing damaged tendons or ligaments. Various repair apparatus include an elongate tensile member and a pair of anchor assemblies connected for movement along the tensile member on either side of a repair site, such as a tear or laceration. The anchor assemblies or structures may take many forms, and may include barbed, helical, and crimp-type anchors. In the preferred embodiments, at least one anchor structure is movable along the elongate tensile member to assist with adjusting a tendon segment to an appropriate repair position and the anchor structure or structures are then lockable onto the elongate tensile member to assist with affixing the tendon at the repair position. Tendon and/or ligament-to-bone repair apparatus and methods employ similar concepts.
    Type: Grant
    Filed: April 2, 2004
    Date of Patent: November 3, 2009
    Assignees: Tendon Technology, Ltd., Ortheon Medical L.L.C.
    Inventors: Lawrence M. Lubbers, Kenneth E. Hughes, Carl R. Coleman, Warren P. Williamson, IV, Craig B. Berky, Thomas J. Ward, Matthew J. Huddleston, Mark A. Goldin, William J. Christy, Perry DeFazio, Brian Scott Schumacher, Terence Lee Murphy, Nickola Symone Lewis, Jeremy Jarrett, Joseph E. Young
  • Patent number: 7497865
    Abstract: A ring for use in anastomosis. Preferably, the ring is integrally formed from metal, and includes a ring portion and tines and docking members that extend from the ring portion. The ring portion and tines are malleable, and preferably also the docking members are malleable. The ring portion and tines are malleable in the sense that once deformed from a first shape into a second shape, they will not relax back into the first shape from the second. To install the ring in a vessel with the ring portion extending around an incision or other orifice, the tines pierce the tissue around the orifice and are curled against an anvil. The action of curling the tines inverts the tissue near the orifice edges to expose the inside surface of the vessel or organ.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: March 3, 2009
    Assignee: MAQUET Cardiovascular, LLC
    Inventors: Geoffrey H. Willis, Thomas A. Kramer, Paul A. Spence, George T. Christakis, Timothy J. McCoy, John W. Davis, Bradley D. Blackwood, Peter Callas, Michael Francis Wei, Jonathan L. Podmore, Andrew Knight, Thomas J. Ward, Warren P. Williamson, IV
  • Publication number: 20080319266
    Abstract: The present application discloses several embodiments of a devices for maintaining visualization with a surgical scope. The embodiments of the device are adapted to shield, defog or clean the lens of the surgical scope while the surgical scope is being used to perform a surgical procedure within a patient's body. In one embodiment, a view optimizer is provided that is adapted to deliver at least one fluid to the objective lens of the laparoscope to clean and/or defog the objective lens of the laparoscope without the need to remove the laparoscope from the surgical field. In additional embodiments, a view optimizer is provided that is adapted to create leakage or venting of gas from the body cavity so as to ensure continuous gas flow from an insufflator.
    Type: Application
    Filed: June 19, 2007
    Publication date: December 25, 2008
    Applicant: MINIMALLY INVASIVE DEVICES, LLC
    Inventors: Wayne Lyle Poll, Matthew J. Huddleston, William J. Post, Thomas J. Ward, Caroline M. Crisafulli, Adam Landis
  • Patent number: 7179424
    Abstract: A cassette for holding a tissue sample includes a body having a bottom wall and a plurality of side walls extending upwardly with respect to the bottom wall to define an interior space for receiving the tissue sample. A lid is configured to be received in the interior space, and the cassette is sectionable in a microtome. Sensing elements are associated with the body or lid and configured to allow an automated sensing system to determine at least one characteristic of the cassette. A flange extends along upper portions of at least two of the side walls and includes a plurality of holes. Other features are included to more effectively and efficiently manufacture and use the cassette.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: February 20, 2007
    Assignee: Biopath Automation, L.L.C.
    Inventors: Warren P. Williamson, IV, Thomas J. Ward, Stephen P. Whitlatch
  • Patent number: 6984241
    Abstract: Apparatus and methods for repairing damaged tendons or ligaments. Various repair apparatus include an elongate tensile member and a pair of anchor structures connected for movement along the tensile member on either side of a repair site, such as a tear or laceration. The anchor structures may take many forms, and may include barbed, helical, and crimp-type anchors. In the preferred embodiments, at least one anchor structure is movable along the elongate tensile member to assist with adjusting a tendon segment to an appropriate repair position and the anchor structure or structures are then lockable onto the elongate tensile member to assist with affixing the tendon at the repair position. The invention further provides tendon-to-bone repair apparatus and methods employing similar concepts. Tendon retrieval devices of the invention include helical members for rotating into a tendon end and subsequently moving the tendon to an appropriate operating position.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: January 10, 2006
    Assignee: Tendon Technology, Ltd.
    Inventors: Lawrence M. Lubbers, Kenneth E. Hughes, Carl R. Coleman, Warren P. Williamson, IV, Craig B. Berky, Matthew J. Huddleston, Thomas J. Ward, Mark A. Goldin, Jeremy Jarrett, Joseph E. Young
  • Patent number: 6884251
    Abstract: An anastomosis is performed using a flexible mounting structure mounted on the outside of at least one vessel. Fasteners extend through the vessel and are bent towards the incision to attach the flexible mounting structure to the vessel in a manner that controls the edge of the vessel adjacent to the incision. The mounting structures are oriented on each vessel so fasteners on one mounting structure interdigitate with fasteners on the other mounting structure at the location of contact between the vessels when the two vessels are brought together. This creates two complementary sinusoidal-shaped vessel edges with peaks of one edge being accommodated in the valleys of the other edge. The peak-to-valley orientation forms a sinusoidal-shaped joint which is leak free. The fasteners are spaced so proper pressure is applied to the tissue to promote healing without leaking. Furthermore, the fasteners are sized and shaped to properly engage the tissue and bend in a desired manner.
    Type: Grant
    Filed: March 6, 2003
    Date of Patent: April 26, 2005
    Assignee: Origin Medsystems, Inc.
    Inventors: Paul A. Spence, Warren P. Williamson, IV, George Christakis, Mark Ortiz, Craig B. Berky, Douglas P. Allen, Matthew J. Huddleston, Delbert Ted Leimbach, Cecil R. Robinson, E. Dale VanHoose, Thomas J. Ward, Marty J. Warnecke
  • Publication number: 20040220597
    Abstract: A ring for use in anastomosis. Preferably, the ring is integrally formed from metal, and includes a ring portion and tines and docking members that extend from the ring portion. The ring portion and tines are malleable, and preferably also the docking members are malleable. The ring portion and tines are malleable in the sense that once deformed from a first shape into a second shape, they will not relax back into the first shape from the second. To install the ring in a vessel with the ring portion extending around an incision or other orifice, the tines pierce the tissue around the orifice and are curled against an anvil. The action of curling the tines inverts the tissue near the orifice edges to expose the inside surface of the vessel or organ.
    Type: Application
    Filed: May 26, 2004
    Publication date: November 4, 2004
    Inventors: Geoffrey H. Willis, Thomas A. Kramer, Paul A. Spence, George T. Christakis, Timothy J. McCoy, John W. Davis, Bradley D. Blackwood, Peter Callas, Michael Francis Wei, Jonathan L. Podmore, Andrew Knight, Thomas J. Ward, Warren P. Williamson
  • Patent number: 6811555
    Abstract: A ring for use in anastomosis. Preferably, the ring is integrally formed from metal, and includes a ring portion and tines and docking members that extend from the ring portion. The ring portion and tines are malleable, and preferably also the docking members are malleable. The ring portion and tines are malleable in the sense that once deformed from a first shape into a second shape, they will not relax back into the first shape from the second. To install the ring in a vessel with the ring portion extending around an incision or other orifice, the tines pierce the tissue around the orifice and are curled against an anvil. The action of curling the tines inverts the tissue near the orifice edges to expose the inside surface of the vessel or organ.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: November 2, 2004
    Assignee: Origin Medsystems, Inc.
    Inventors: Geoffrey H. Willis, Thomas A. Kramer, Paul A. Spence, George T. Christakis, Timothy J. McCoy, John W. Davis, Bradley D. Blackwood, Peter Callas, Michael Francis Wei, Jonathan L. Podmore, Andrew Knight, Thomas J. Ward, Warren P. Williamson, IV
  • Publication number: 20040193217
    Abstract: Apparatus and methods for repairing damaged tendons or ligaments. Various repair apparatus include an elongate tensile member and a pair of anchor assemblies connected for movement along the tensile member on either side of a repair site, such as a tear or laceration. The anchor assemblies or structures may take many forms, and may include barbed, helical, and crimp-type anchors. In the preferred embodiments, at least one anchor structure is movable along the elongate tensile member to assist with adjusting a tendon segment to an appropriate repair position and the anchor structure or structures are then lockable onto the elongate tensile member to assist with affixing the tendon at the repair position. Tendon and/or ligament-to-bone repair apparatus and methods employ similar concepts.
    Type: Application
    Filed: April 2, 2004
    Publication date: September 30, 2004
    Applicants: Tendon Technology, Ltd., Ortheon Medical L.L.C.
    Inventors: Lawrence M. Lubbers, Kenneth E. Hughes, Carl R. Coleman, Warren P. Williamson, Craig B. Berky, Thomas J. Ward, Matthew J. Huddleston, Mark A. Goldin, William J. Christy, Perry DeFazio, Brian Scott Schumacher, Terence Lee Murphy, Nickola Symone Lewis, Jeremy Jarrett, Joseph E. Young
  • Publication number: 20040167573
    Abstract: Wire fasteners having legs with lengths that can be one hundred times the width of the fastener are used to secure items, such as prosthesis valves to a patient during minimally invasive surgery. The fasteners are manipulated into position and then are immobilized by means of the legs thereof for tensioning, cutting and forming in situ. The fasteners are manipulated, tensioned and formed from the leg end of the fasteners. Tools for initially placing the fasteners and for immobilizing, tensioning, cutting and bending the fastener legs are disclosed. Once the fasteners are initially placed, the prosthesis is placed on the long legs of the placed fasteners and is guided into position on the legs. Once the prosthesis is in position, the legs of the fasteners are immobilized, tensioned, cut and bent into staple-like shapes to secure the prosthesis to the patient. A method for carrying out the procedure using the long fastener is also disclosed.
    Type: Application
    Filed: February 25, 2004
    Publication date: August 26, 2004
    Applicant: CardvioVascular Technologies, L.L.C.
    Inventors: Warren P. Williamson, Paul A. Spence, George A. Keller, Cecil R. Robinson, Thomas J. Ward
  • Publication number: 20040024420
    Abstract: Apparatus and methods for repairing damaged tendons or ligaments. Various repair apparatus include an elongate tensile member and a pair of anchor structures connected for movement along the tensile member on either side of a repair site, such as a tear or laceration. The anchor structures may take many forms, and may include barbed, helical, and crimp-type anchors. In the preferred embodiments, at least one anchor structure is movable along the elongate tensile member to assist with adjusting a tendon segment to an appropriate repair position and the anchor structure or structures are then lockable onto the elongate tensile member to assist with affixing the tendon at the repair position. Tendon-to-bone repair apparatus and methods are also disclosed employing similar concepts. Tendon retrieval devices include helical members for rotating into a tendon end and subsequently moving the tendon to an appropriate operating position.
    Type: Application
    Filed: July 16, 2003
    Publication date: February 5, 2004
    Applicant: Tendon Technology, Ltd.
    Inventors: Lawrence M. Lubbers, Kenneth E. Hughes, Carl R. Coleman, Warren P. Williamson, Craig B. Berky, Thomas J. Ward
  • Publication number: 20030216752
    Abstract: The present disclosure relates to a ligating instrument and end effector assemblies for use in laparoscopic tubal ligation procedures. The ligating instrument includes an integral grasping assembly and an integral end effector actuator and is configured to perform a ligating procedure by operation of a single hand of a user. The ligating instrument includes an integral grasper assembly for grasping a tubular tissue section and removable end effector or suture deployment mechanism for holding open a suture to be positioned about the tubular section. The grasper is configured to draw the tubular section into the open loop of suture material and cinch the suture material about the tubular tissue section. A rotator knob may be provided to orient grasper members associated with the grasper assembly relative to the tissue section.
    Type: Application
    Filed: May 12, 2003
    Publication date: November 20, 2003
    Applicant: ESD Medical L.L.C.
    Inventors: Warren P. Williamson, Craig B. Berky, Thomas J. Ward, George Keller, Timothy N. Wells, William J. Christy
  • Publication number: 20030153932
    Abstract: An anastomosis is performed using a flexible mounting structure mounted on the outside of at least one vessel. Fasteners extend through the vessel and are bent towards the incision to attach the flexible mounting structure to the vessel in a manner that controls the edge of the vessel adjacent to the incision. The mounting structures are oriented on each vessel so fasteners on one mounting structure interdigitate with fasteners on the other mounting structure at the location of contact between the vessels when the two vessels are brought together. This creates two complementary sinusoidal-shaped vessel edges with peaks of one edge being accommodated in the valleys of the other edge. The peak-to-valley orientation forms a sinusoidal-shaped joint which is leak free. The fasteners are spaced so proper pressure is applied to the tissue to promote healing without leaking. Furthermore, the fasteners are sized and shaped to properly engage the tissue and bend in a desired manner.
    Type: Application
    Filed: March 6, 2003
    Publication date: August 14, 2003
    Inventors: Paul A. Spence, Warren P. Williamson, George Christakis, Mark Ortiz, Craig B. Berky, Douglas P. Allen, Matthew J. Huddleston, Delbert Ted Leimbach, Cecil R. Robinson, E. Dale VanHoose, Thomas J. Ward, Marty J. Warnecke
  • Patent number: D613403
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: April 6, 2010
    Assignee: Minimally Invasive Devices, LLC
    Inventors: Wayne Poll, Matthew Huddleston, Thomas J. Ward, Caroline M. Crisafulli, Adam Landis