Patents by Inventor Thomas L. Cable

Thomas L. Cable has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6139810
    Abstract: A reactor comprising: a hollow shell defining a hermetic enclosure; a plurality of tube sheets disposed within said hermetic enclosure, a first one of said plurality of tube sheets defining a first chamber; at least one reaction tube each having a first end and an opposing second end, said first end being fixedly attached and substantially hermetically sealed to one end of said plurality of tube sheets and opening into said first chamber, the second end being axially unrestrained; each of said reaction tubes is comprised of an oxygen selective ion transport membrane with an anode side wherein said oxygen selective ion transport membrane is formed from a mixed conductor metal oxide that is effective for the transport of elemental oxygen at elevated temperatures and at least a portion of said first and second heat transfer sections are formed of metal; each of said reaction tubes includes first and second heat transfer sections and a reaction section, said reaction section disposed between said first and second
    Type: Grant
    Filed: June 3, 1998
    Date of Patent: October 31, 2000
    Assignees: Praxair Technology, Inc., The Standard Oil Company
    Inventors: Christian Friedrich Gottzmann, Ravi Prasad, Joseph Michael Schwartz, Victor Emmanuel Bergsten, James Eric White, Terry J. Mazanec, Thomas L. Cable, John C. Fagley
  • Patent number: 6019885
    Abstract: An electrochemical process for extracting oxygen from an oxygen-containing gas which uses an electrochemical cell having two zones separated by a multi-component membrane made from intimate, gas-impervious, multi-phase mixture of an electronically conductive phase and an oxygen ion-conducting phase. In one zone a gas containing oxygen is passed in contact with the membrane. In the other zone a gas capable of reacting with oxygen is passed in contact with the membrane.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 1, 2000
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Jr., Wayne R. Kliewer
  • Patent number: 5910238
    Abstract: An article for the separation, storage and delivery of substantially pure oxygen, comprises a closed walled, hollow container wherein at least a portion of at least one wall of the container is an oxygen separation material, providing a sole means for transporting substantially all oxygen into the container. An apparatus for the delivery of oxygen comprises means for transferring oxygen from a fluid containing oxygen to at least one such container at elevated temperature and pressure. The apparatus can provide means for transporting said the substantially pure oxygen-bearing container, means for storing said the container, and means for extracting oxygen from the container. A process includes filling the article with substantially pure oxygen, and, storing the substantially pure oxygen within the container for a selected period of time. The process may include releasing the oxygen from the container.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: June 8, 1999
    Assignee: Technology Management, Inc.
    Inventors: Thomas L. Cable, Michael A. Petrik, Benson P. Lee
  • Patent number: 5788748
    Abstract: The present invention relates to novel solid state mixed conductor membranes and their use for separating oxygen from oxygen-containing feeds at elevated temperatures. The membranes comprise a multicomponent metallic oxide of substantially cubic perovskite structure, stable in air over the temperature range of 25.degree.-950.degree. C., having no connected through porosity wherein the membrane is of a composition represented by the formula ?A.sub.1-x A'.sub.x !?Co.sub.1-y-z B.sub.y B'.sub.z !O.sub.3-.delta., where A.tbd.Ca, Sr, Ba, and mixtures thereof; A'.tbd.La, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U, and mixtures thereof; B.tbd.Fe, Mn, Cr, V, Ti, and mixtures thereof; B'.tbd.Cu, Ni, and mixtures thereof; .about.0.0001.ltoreq.x.ltoreq..about.0.1; .about.0.002.ltoreq.y<0.05; .about.0.0005.ltoreq.z.ltoreq..about.0.3; .delta. is determined by the valence of the metals.
    Type: Grant
    Filed: December 20, 1995
    Date of Patent: August 4, 1998
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable
  • Patent number: 5766317
    Abstract: An article for the separation, storage and delivery of substantially pure oxygen, comprises a closed walled, hollow container wherein at least a portion of at least one wall of the container is an oxygen separation material, providing a sole means for transporting substantially all oxygen into the container.An apparatus for the delivery of oxygen comprises means for transferring oxygen from a fluid containing oxygen to at least one such container at elevated temperature and pressure. The apparatus can provide means for transporting said the substantially pure oxygen-bearing container, means for storing said the container, and means for extracting oxygen from the container.A process includes filling the article with substantially pure oxygen, and, storing the substantially pure oxygen within the container for a selected period of time. The process may include releasing the oxygen from the container.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: June 16, 1998
    Assignee: Technology Management, Inc.
    Inventors: Thomas L. Cable, Michael A. Petrik, Benson P. Lee
  • Patent number: 5744015
    Abstract: An electrochemical process for producing unsaturated hydrocarbon compounds from unsaturated hydrocarbon compounds and for extracting oxygen from a gas containing N.sub.2 O, NO, NO.sub.2, SO.sub.2, or SO.sub.3 is described. The process is characterized by the use of mixed metal oxide materials having a perovskite structure represented by the formula:A.sub.s A'.sub.t B.sub.u B'.sub.v B".sub.w O.sub.xwherein A represents a lanthanide or Y, or a mixture thereof; A' represents an alkaline earth metal or a mixture thereof; B represents Fe; B' represents Cr or Ti, or a mixture thereof; and B" represents Mn, Co, V, Ni, or Cu, or a mixture thereof.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 28, 1998
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Jr., Wayne R. Kliewer
  • Patent number: 5723035
    Abstract: The invention relates to novel membranes, formed from perovskitic or multi-phase structures, with a chemically active coating which demonstrate exceptionally high rates of fluid flux. One application is the separation of oxygen from oxygen-containing feeds at elevated temperatures. The membranes are conductors of oxygen ions and electrons, and are substantially stable in air over the temperature range of 25.degree. C. to the operating temperature of the membrane.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 3, 1998
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable
  • Patent number: 5714091
    Abstract: The invention relates to a process for the partial oxidation of C.sub.1 to C.sub.4 hydrocarbons, using novel membranes formed from perovskitic or multi-phase structures, with a chemically active coating which demonstrate exceptionally high rates of fluid flux. The process uses membranes that are conductors of oxygen ions and electrons, which are substantially stable in air over the temperature range of 25.degree. C. to the operating temperature of the membrane.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 3, 1998
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable
  • Patent number: 5702999
    Abstract: The present invention relates to novel solid state mixed conductor membranes and their use for separating oxygen from oxygen-containing feeds at elevated temperatures. The membranes comprise a multicomponent metallic oxide of substantially cubic perovskite structure, stable in air over the temperature range of 25.degree.-950.degree. C., having no connected through porosity wherein the membrane is of a composition represented by the formula ?A.sub.1-x A'.sub.x !?Co.sub.1-y-z B.sub.y B'.sub.z !O.sub.3-.delta., where A.ident.Ca, Sr, Ba, and mixtures thereof; A'.ident.La, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U, and mixtures thereof; B.ident.Fe, Mn, Cr, V, Ti, and mixtures thereof; B'.ident.Cu, Ni, and mixtures thereof; .about.0.0001.ltoreq..times..ltoreq..about.0.1; .about.0.002.ltoreq.y<0.05; .about.0.0005.ltoreq.z.ltoreq..about.0.3; .delta. is determined by the valence of the metals.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: December 30, 1997
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable
  • Patent number: 5693212
    Abstract: Solid membranes comprising an intimate, gas-impervious, multi-phase mixture of an electronically-conductive material and an oxygen ion-conductive material and/or a mixed metal oxide of a perovskite structure are described. Electrochemical reactor components, such as reactor cells, and electrochemical reactors are also described for transporting oxygen from any oxygen-containing gas to any gas or mixture of gases that consume oxygen. The reactor cells generally comprise first and second zones separated by an element having a first surface capable of reducing oxygen to oxygen ions, a second surface capable of reacting oxygen ions with an oxygen-consuming gas, an electron-conductive path between the first and second surfaces and an oxygen ion-conductive path between the first and second surfaces. The element may further comprise (1) a porous substrate, (2) an electron-conductive metal, metal oxide or mixture thereof and/or (3) a catalyst.
    Type: Grant
    Filed: August 15, 1996
    Date of Patent: December 2, 1997
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Jr., Wayne R. Kliewer
  • Patent number: 5648304
    Abstract: The present invention relates to novel solid state mixed conductor membranes and their use for separating oxygen from oxygen-containing feeds at elevated temperatures. The membranes comprise a multicomponent metallic oxide of substantially cubic perovskite structure, stable in air over the temperature range of 25.degree.-950.degree. C., having no connected through porosity wherein the membrane is of a composition represented by the formula [A.sub.1-x A'.sub.x ][Co.sub.1-y-z B.sub.y B'.sub.z ]O.sub.3-.delta., where A.tbd.Ca, Sr, Ba, and mixtures thereof; A'.tbd.La, Y, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Th, U, and mixtures thereof; B.tbd.Fe, Mn, Cr, V, Ti, and mixtures thereof; B'.tbd.Cu, Ni, and mixtures thereof; .about.0.0001.ltoreq.x.ltoreq..about.0.1; .about.0.002.ltoreq.y<0.05; .about.0.0005.ltoreq.z.ltoreq..about.0.3; .delta. is determined by the valence of the metals.
    Type: Grant
    Filed: March 13, 1996
    Date of Patent: July 15, 1997
    Inventors: Terry J. Mazanec, Thomas L. Cable
  • Patent number: 5591315
    Abstract: An electrochemical process for producing unsaturated hydrocarbon compounds from unsaturated hydrocarbon compounds and for extracting oxygen from a gas containing N.sub.2 O, NO, NO.sub.2, SO.sub.2, or SO.sub.3 is described. The process is characterized by the use of mixed metal oxide materials having a perovskite structure represented by the formula:A.sub.s A'.sub.t B.sub.u B'.sub.v B".sub.w O.sub.xwherein A represents a lanthanide or Y, or a mixture thereof; A' represents an alkaline earth metal or a mixture thereof; B represents Fe; B' represents Cr or Ti, or a mixture thereof; and B" represents Mn, Co, Vi, Ni or Cu, or a mixture thereof.
    Type: Grant
    Filed: February 24, 1995
    Date of Patent: January 7, 1997
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Jr., Wayne R. Kliewer
  • Patent number: 5589285
    Abstract: The electrical performance of an electrochemical apparatus such as a fuel cell and the durability of the fuel cell elements can be significantly enhanced and extended by the addition of an element between at least one electrode (the oxygen electrode and/or the fuel electrode) and the electrolyte. Performance can be additionally enhanced by the design of at least one electrode to alter its flow characteristics. An integrated separator element can additionally function as at least one electrode of the fuel cell. The electrochemical apparatus is tolerant of the utilization of sulfur bearing fuels.
    Type: Grant
    Filed: May 31, 1995
    Date of Patent: December 31, 1996
    Assignee: Technology Management, Inc.
    Inventors: Thomas L. Cable, Michael A. Petrik
  • Patent number: 5445903
    Abstract: The electrical performance of an electrochemical apparatus such as a fuel cell and the durability of the fuel cell elements can be significantly enhanced and extended by the addition of an element between at least one electrode (the oxygen electrode and/or the fuel electrode) and the electrolyte. Performance can be additionally enhanced by the design of at least one electrode to alter its flow characteristics. An integrated separator element can additionally function as at least one electrode of the fuel cell.
    Type: Grant
    Filed: September 9, 1993
    Date of Patent: August 29, 1995
    Assignee: Technology Management, Inc.
    Inventors: Thomas L. Cable, Michael A. Petrik
  • Patent number: 5306411
    Abstract: Solid membranes comprising an intimate, gas-impervious, multi-phase mixture of an electronically-conductive material and an oxygen ion-conductive material and/or a mixed metal oxide of a perovskite structure are described. Electrochemical reactor components, such as reactor cells, and electrochemical reactors are also described for transporting oxygen from any oxygen-containing gas to any gas or mixture of gases that consume oxygen. The reactor cells generally comprise first and second zones separated by an element having a first surface capable of reducing oxygen to oxygen ions, a second surface capable of reacting oxygen ions with an oxygen-consuming gas, an electron-conductive path between the first and second surfaces and an oxygen ion-conductive path between the first and second surfaces. The element may further comprise (1) a porous substrate, (2) an electron-conductive metal, metal oxide or mixture thereof and/or (3) a catalyst.
    Type: Grant
    Filed: November 27, 1990
    Date of Patent: April 26, 1994
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Jr., Wayne R. Kliewer
  • Patent number: 4933054
    Abstract: An electrocatalytic process is described for producing unsaturated hydrocarbon compounds from saturated hydrocarbon compounds. The process is conducted in an electrogenerative cell and generally comprises the steps of(A) providing a fuel cell comprising a solid electrolyte having a first surface coated with conductive metal, metal oxide or mixtures thereof capable of catalyzing the reduction of oxygen to oxygen ions, and a second surface coated with metal, metal oxide or mixtures thereof, the two conductive coatings being connected by an external circuit,(B) passing an oxygen-containing gas in contact with the first conductive coating while,(C) passing the saturated hydrocarbon compound-containing feed gas in contact with the second conductive coating, and(D) recovering unsaturated hydrocarbons.In a preferred embodiment, the conductive metal coating on the first and second surfaces comprises a silver-containing metal composition.
    Type: Grant
    Filed: March 13, 1987
    Date of Patent: June 12, 1990
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable
  • Patent number: 4802958
    Abstract: An electrocatalytic process is described for producing higher molecular weight hydrocarbons from lower molecular weight hydrocarbons. The process is conducted in an electrogenerative cell and generally comprises the steps of(A) providing a fuel cell comprising a solid electrolyte having a first surface coated with conductive metal, metal oxide or mixtures thereof capable of catalyzing the reduction of oxygen to oxygen ions, and a second surface coated with metal, metal oxide or mixtures thereof, provided that when both coatings are silver coatings, or the first coating is silver and the second coating is a silver/bismuth coating, the second coating also contains at least one other metal, the two conductive coatings being connected by an external circuit,(B) passing an oxygen-containing gas in contact with the first conductive coating while,(C) passing a low molecular weight hydrocarbon-containing feed gas in contact with the second conductive coating, and(D) recovering higher molecular weight hydrocarbons.
    Type: Grant
    Filed: March 17, 1987
    Date of Patent: February 7, 1989
    Assignee: The Standard Oil Company
    Inventors: Terry I. Mazanec, Thomas L. Cable
  • Patent number: 4793904
    Abstract: An electrocatalytic process is described for producing synthesis gas from light hydrocarbons such as methane or natural gas. The process generally comprises the steps of(A) providing an electrochemical cell comprising a solid electrolyte having a first surface coated with conductive metal, metal oxide or mixtures thereof capable of facilitating the reduction of oxygen to oxygen ions, and a second surface coated with conductive metal, metal oxide or mixtures thereof, provided that both coatings are stable at the operating temperatures,(B) heating the cell to a temperature of at least 1000.degree. C.,(C) passing an oxygen-containing gas in contact with the first conductive coating,(D) passing methane, natural gas or other light hydrocarbons in contact with the second conductive coating, and(E) recovering synthesis gas.
    Type: Grant
    Filed: October 5, 1987
    Date of Patent: December 27, 1988
    Assignee: The Standard Oil Company
    Inventors: Terry J. Mazanec, Thomas L. Cable, John G. Frye, Jr.