Patents by Inventor Thomas L. Davisson

Thomas L. Davisson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9719156
    Abstract: The present invention relates to an aluminum alloy product for use as a finstock material within brazed heat exchangers and, more particularly, to a finstock material having high strength and conductivity after brazing. The invention is an aluminum alloy finstock comprising the following composition in weight %: Fe ?0.8-1.25; Si ?0.8-1.25; Mn 0.70-1.50; Cu 0.05-0.50; Zn up to 2.5; other elements less than or equal to 0.05 each and less than or equal to 0.15 in total; and balance aluminum. The invention also relates to a method of making the finstock material.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: August 1, 2017
    Assignee: Novelis Inc.
    Inventors: Andrew D. Howells, Kevin Michael Gatenby, Pierre Henri Marois, Thomas L. Davisson, Fred Perdriset
  • Publication number: 20130156634
    Abstract: The present invention relates to an aluminum alloy product for use as a finstock material within brazed heat exchangers and, more particularly, to a finstock material having high strength and conductivity after brazing. The invention is an aluminum alloy finstock comprising the following composition in weight %: Fe ?0.8-1.25; Si ?0.8-1.25; Mn 0.70-1.50; Cu 0.05-0.50; Zn up to 2.5; other elements less than or equal to 0.05 each and less than or equal to 0.15 in total; and balance aluminum. The invention also relates to a method of making the finstock material.
    Type: Application
    Filed: December 7, 2012
    Publication date: June 20, 2013
    Inventors: Andrew D. HOWELLS, Kevin Michael Gatenby, Pierre Henri Marois, Thomas L. Davisson, Fred Perdriset
  • Patent number: 8349470
    Abstract: The exemplary embodiments relate to a multilayer aluminum alloy sheet material suitable for fabrication into coolant-conveying tubes, headers and the like used for heat exchangers, and to the tubes and headers, etc., fabricated from the sheet. The multi-layer metal sheet has a core layer of aluminum alloy having first and second sides. The first side has an interlayer made of a Zn-containing aluminum alloy positioned between a Zn-containing outer layer and the core layer. The alloy of the outer layer is more electronegative than the alloy of the interlayer. The alloy of the interlayer is preferably more electronegative than the alloy of the core layer. The first side clad in this way is the side intended for exposure to the coolant, and provides good resistance to corrosion and erosion.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: January 8, 2013
    Assignee: Novelis Inc.
    Inventors: Pierre Henri Marois, Kevin Michael Gatenby, Thomas L. Davisson, Andrew D. Howells, Ian Smith
  • Publication number: 20100159272
    Abstract: The exemplary embodiments relate to a multilayer aluminum alloy sheet material suitable for fabrication into coolant-conveying tubes, headers and the like used for heat exchangers, and to the tubes and headers, etc., fabricated from the sheet. The multi-layer metal sheet has a core layer of aluminum alloy having first and second sides. The first side has an interlayer made of a Zn-containing aluminum alloy positioned between a Zn-containing outer layer and the core layer. The alloy of the outer layer is more electronegative than the alloy of the interlayer. The alloy of the interlayer is preferably more electronegative than the alloy of the core layer. The first side clad in this way is the side intended for exposure to the coolant, and provides good resistance to corrosion and erosion.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 24, 2010
    Inventors: Pierre Henri Marois, Kevin Michael Gatenby, Thomas L. Davisson, Andrew D. Howells, Ian Smith
  • Patent number: 7547463
    Abstract: A method of imparting a non-stick coating to a surface of an aluminum foil sheet, and the resulting foil sheet. The method involves coating at least part (preferably at least 40%) of an area of a surface of a metal sheet article (preferably an aluminum foil sheet) with a substantially solvent-free silicone oil at an average coating application rate in a range of 1.5 to 10 mg/ft2 of the coated surface area. The coated sheet article is then preferably coiled. The coated sheet article is then heated in the presence of air or oxygen at a temperature of 250° C. or higher for a period of time of at least 10 minutes. The treated surface is both non-stick and food-friendly.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: June 16, 2009
    Assignee: Novelis Inc.
    Inventors: Thomas L. Davisson, Sadashiv Nadkarni
  • Patent number: 7172664
    Abstract: A method is described for making an aluminum alloy foil suitable for application to fins used in heat exchangers. The method comprises providing an aluminum alloy composition containing about 0.27% to about 0.55% by weight of iron, about 0.06% to about 0.55% by weight of silicon and optionally up to about 0.20% by weight of copper; continuously casting a coiled strip from the molten aluminum alloy; cold rolling the continuously cast coil to a final gauge of about 0.076 mm to about 0.152 mm and partially annealing the aluminum alloy sheet at a temperature below about 260° C., with a maximum overheat of about 10° C. to anneal the aluminum alloy foil substantially without any recrystallization.
    Type: Grant
    Filed: July 4, 2001
    Date of Patent: February 6, 2007
    Assignee: Novelis Inc.
    Inventors: Thomas L. Davisson, Luc Montgrain, Sadashiv Nadkarni
  • Publication number: 20030183309
    Abstract: A method is described for making an aluminum alloy foil suitable for application to fins used in heat exchangers. The method comprises providing an aluminum alloy composition containing about 0.27% to about 0.55% by weight of iron, about 0.06% to about 0.55% by weight of silicon and optionally up to about 0.20% by weight of copper; continuously casting a coiled strip from the molten aluminum alloy; cold rolling the continuously cast coil to a final gauge of about 0.076 mm to about 0.152 mm and partially annealing the aluminum alloy sheet at a temperature below about 260° C., with a maximum overheat of about 10° C. to anneal the aluminum alloy foil substantially without any recrystallization.
    Type: Application
    Filed: April 10, 2003
    Publication date: October 2, 2003
    Inventors: Thomas L. Davisson, Luc Montgrain, Sadashiv Nadkarni
  • Patent number: 6533877
    Abstract: High strength foil having dead fold foil characteristics is produced without the rolling and other production problems encountered with prior high strength foils by controlling manganese content, interannealing temperatures and, optionally, final annealing temperatures. The alloy contains 0.05 to 0.15 %, preferably 0.095 to 0.125%, manganese by weight. Cold worked sheet is interannealed at a temperature of about 200° C. to about 260° C., preferably 230° to 250 ° C., to produce substantially fully recrystallized sheet while maintaining most of the manganese in solid solution. The interannealed sheet is rolled to final gauge and finally annealed, preferably at a temperature of about 250° C. to about 325° C., more preferably about 260° C. to about 325° C., to produce dead fold aluminum foil with a yield strength of at least 89.6 MPa (13 ksi), and ultimate tensile strength of at least 103.4 MPa (15 ksi) and a Mullen rating of at least 89.6 kPa (13 psi) at a gauge of 0.0015 cm (0.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: March 18, 2003
    Assignee: Alcan International Limited
    Inventors: Thomas L. Davisson, Luc M. Montgrain, Sadashiv Nadkarni
  • Patent number: 6350532
    Abstract: The invention relates to a recyclable aluminum foil. The foil is made of an alloy containing 0.2%-0.5% Si, 0.4%-0.8% Fe, 0.1%-0.3% Cu, and 0.05%-0.3% Mn by weight. with the balance aluminum and incidental impurities. The foil contains at least about 2% by weight of strengthening particulates and has at least about 0.1% by weight of the copper and/or manganese retained in solid solution. The invention also relates to a method of manufacturing a sheet of aluminum based on an alloy which involves continuously casting an alloy of the above composition to form a sheet of alloy, coiling said sheet of alloy, cold rolling the sheet of alloy, interannealing the alloy after a first pass of the cold rolling; and further cold rolling the alloy to a final desired gauge. The foil, which is suitable for household use, has improved strength due to a larger quantity of dispersoids fortified by elements in solid solution, and can be recycled with other alloy scrap.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: February 26, 2002
    Assignee: Alcan International Ltd.
    Inventors: Thomas L. Davisson, Luc Montgrain, Daniel Pulliam, Sadashiv Nadkarni