Patents by Inventor Thomas Laubscher

Thomas Laubscher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11668649
    Abstract: A sensor arrangement includes a reaction subassembly having a housing and a detector subassembly. The housing is a layered component arrangement encompassing a luminophore-containing reaction laminate excitable, by irradiation with a first electromagnetic radiation of a first wavelength, to emit a second electromagnetic radiation of a second wavelength different from the first wavelength; and a temperature-detection laminate emitting an infrared radiation. The housing includes an opening for introducing a fluid, a reaction window and a temperature-sensing window. The reaction window transmits the first and second electromagnetic radiation, and the temperature-sensing window is penetrable by infrared radiation.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: June 6, 2023
    Assignee: HAMILTON BONADUZ AG
    Inventors: Marco Giardina, Bernd Offenbeck, Christoph Schranz, Thomas Laubscher, Dominik Novotni, Dirk Schönfuss
  • Patent number: 11666716
    Abstract: A system for automated adjustment of a pressure set by a ventilation device, in particular a positive and-expiratory pressure and/or a maximum airway pressure, the system comprising a pressure detection arrangement for detecting a transpulmonary pressure at the end of an expiration phase and/or for detecting a transpulmonary pressure at the end of an inspiration phase, and a device for automated adjustment of the pressure set by the ventilation device on the basis of the transpulmonary pressure detected at the end of the expiration phase and/or the transpulmonary pressure detected at the end of the inspiration phase.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: June 6, 2023
    Assignee: Hamilton Medical AG
    Inventors: Dominik Novotni, Thomas Laubscher
  • Patent number: 11642445
    Abstract: A system for supporting the blood gas exchange by means of mechanical ventilation and extracorporeal blood gas exchange comprises a ventilation device for mechanical ventilation of the lungs of a patient, and an ECLS device for the extracorporeal blood gas exchange, wherein the ventilation system is designed to perform mechanical respiratory support by the ventilation device on the one hand and an extracorporeal blood gas exchange by the ECLS device on the other hand in coordinated, automated manner in order to support the gas exchange in the blood circulation of the patient, wherein the ECLS device sets a level of the extracorporeal blood gas exchange, and the ventilation device, on the basis of the level of the extracorporeal blood gas exchange set by the ECLS device, adjusts in automated manner to a level of the mechanical respiratory support.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: May 9, 2023
    Assignee: HAMILTON MEDICAL AG
    Inventors: Thomas Laubscher, Dominik Novotni
  • Publication number: 20220268695
    Abstract: A sensor arrangement includes a reaction subassembly having a housing and a detector subassembly. The housing is a layered component arrangement encompassing a luminophore-containing reaction laminate excitable, by irradiation with a first electromagnetic radiation of a first wavelength, to emit a second electromagnetic radiation of a second wavelength different from the first wavelength; and a temperature-detection laminate emitting an infrared radiation. The housing includes an opening for introducing a fluid, a reaction window and a temperature-sensing window. The reaction window transmits the first and second electromagnetic radiation, and the temperature-sensing window is penetrable by infrared radiation.
    Type: Application
    Filed: July 8, 2021
    Publication date: August 25, 2022
    Applicant: Hamilton Bonaduz AG
    Inventors: Marco Giardina, Bernd Offenbeck, Christoph Schranz, Thomas Laubscher, Dominik Novotni, Dirk Schönfuss
  • Publication number: 20220257141
    Abstract: A method for determining the functional residual capacity of a patient's lung, includes supplying a first inspiratory breathing gas having a first proportion of a metabolically inert gas, supplying a second inspiratory breathing gas having a second proportion of the metabolically inert gas, determining any arising volume difference, which represents a difference in volume between a volume of inspiratory and of expiratory metabolically inert gas for a determination period, determining the functional residual capacity taking into account the volume difference and a proportion difference between a first proportion quantity and a second proportion quantity, which represent the first proportion and the second proportion of the metabolically inert gas, respectively, and determining a base difference, which represents a difference between a tidal volume of inspiratory metabolically inert gas and of expiratory metabolically inert gas.
    Type: Application
    Filed: July 15, 2020
    Publication date: August 18, 2022
    Applicant: HAMILTON MEDICAL AG
    Inventors: Thomas Laubscher, Christoph Schranz, Dominik Novotni, Sascha Reidt
  • Patent number: 11119036
    Abstract: A sensor arrangement (50) encompasses a reaction subassembly (72) having a housing (52) and having a detector subassembly (54), there being provided in the housing (52) a layered component arrangement (60) that encompasses: a luminophore-containing reaction laminate (62) that is excitable, by irradiation with a first electromagnetic radiation of a first wavelength, to emit a second electromagnetic radiation of a second wavelength different from the first wavelength; and a temperature-detection laminate (64) emitting an infrared radiation; the housing (52) comprising an opening (78a, 78b) through which a fluid is introducible; the housing (52) comprising a reaction window (66a) and a temperature-sensing window (66b) arranged physically remotely therefrom; the one reaction window (66a) transmitting the first (E1) and the second electromagnetic radiation (E2); and the temperature-sensing window (66b) being penetrable by infrared radiation (I); the detector subassembly (54) encompassing: a radiation source (
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: September 14, 2021
    Assignee: HAMILTON BONADUZ AG
    Inventors: Marco Giardina, Bernd Offenbeck, Christoph Schranz, Thomas Laubscher, Dominik Novotni, Dirk Schönfuss
  • Publication number: 20200072738
    Abstract: A sensor arrangement (50) encompasses a reaction subassembly (72) having a housing (52) and having a detector subassembly (54), there being provided in the housing (52) a layered component arrangement (60) that encompasses: a luminophore-containing reaction laminate (62) that is excitable, by irradiation with a first electromagnetic radiation of a first wavelength, to emit a second electromagnetic radiation of a second wavelength different from the first wavelength; and a temperature-detection laminate (64) emitting an infrared radiation; the housing (52) comprising an opening (78a, 78b) through which a fluid is introducible; the housing (52) comprising a reaction window (66a) and a temperature-sensing window (66b) arranged physically remotely therefrom; the one reaction window (66a) transmitting the first (E1) and the second electromagnetic radiation (E2); and the temperature-sensing window (66b) being penetrable by infrared radiation (I); the detector subassembly (54) encompassing: a radiation source (
    Type: Application
    Filed: March 6, 2018
    Publication date: March 5, 2020
    Applicants: Hamilton Medical AG, Hamilton Bonaduz AG
    Inventors: Marco Giardina, Bernd Offenbeck, Christoph Schranz, Thomas Laubscher, Dominik Novotni, Dirk Schönfuss
  • Patent number: 10561810
    Abstract: The invention relates to a device for the regulation of PEEP and FiO2 of a ventilator for achieving an arterial oxygen partial pressure in the blood of a mechanically ventilated patient. At reading which is representative of the success of the oxygen supply, i.e. the oxygen saturation of the blood is measured with the device, and assigned to one of three regions, which are defined by two characteristic lines. A first control loop is designed to optimise PEEP and FiO2 on assigning a reading to a region which demands a change of the settings, or to retaining the settings with an assignment to the normal region between the characteristic lines. This first control loop carries out such an optimisation at predefined temporal intervals on account of the representative reading (SaO2REP) and a predefined necessary supply intensity. The ventilator is subsequently activated accordingly.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: February 18, 2020
    Assignee: HAMILTON MEDICAL AG
    Inventors: Josef Brunner, Marc Wysocki, Thomas Laubscher
  • Publication number: 20200016349
    Abstract: A system for automated adjustment of a pressure set by a ventilation device, in particular a positive and-expiratory pressure and/or a maximum airway pressure, the system comprising a pressure detection arrangement for detecting a transpulmonary pressure at the end of an expiration phase and/or for detecting a transpulmonary pressure at the end of an inspiration phase, and a device for automated adjustment of the pressure set by the ventilation device on the basis of the transpulmonary pressure detected at the end of the expiration phase and/or the transpulmonary pressure detected at the end of the inspiration phase.
    Type: Application
    Filed: August 28, 2019
    Publication date: January 16, 2020
    Inventors: Dominik Novotni, Thomas Laubscher
  • Patent number: 10518049
    Abstract: The invention suggests a system for automated adjustment of a pressure set by a ventilation device, in particular a positive and-expiratory pressure and/or a maximum airway pressure, the system comprising a pressure detection arrangement for detecting a transpulmonary pressure at the end of an expiration phase and/or for detecting a transpulmonary pressure at the end of an inspiration phase, and a means for automated adjustment of the pressure set by the ventilation device on the basis of the transpulmonary pressure detected at the end of the expiration phase and/or the transpulmonary pressure detected at the end of the inspiration phase.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: December 31, 2019
    Assignee: HAMILTON MEDICAL AG
    Inventors: Dominik Novotni, Thomas Laubscher
  • Publication number: 20180221609
    Abstract: A control system of a respiratory device for the at least supportive-partial artificial respiration of patients, in particular human patients, comprising a respiratory gas conduit arrangement, a pressure changing arrangement for changing the pressure of respiratory gas in the respiratory gas conduit arrangement during the respiratory operation of the respiratory device, and the control system for controlling the respiratory operation of the respiratory device. The control system has a data input for transmitting operational or/and patient data to the control system. The control system is configured to determine a respiratory operating parameter for the operation of the respiratory device selectively by means of a predetermined first data relationship or by means of a predetermined second data relationship that is different from the first data relationship.
    Type: Application
    Filed: February 15, 2016
    Publication date: August 9, 2018
    Applicant: HAMILTON MEDICAL AG
    Inventors: Lars KÜHN, Dominik NOVOTNI, Thomas LAUBSCHER
  • Patent number: 9987446
    Abstract: There is suggested a system for automated adjustment of a pressure set by a respiration device, in particular a positive end-expiratory pressure and/or a maximum airway pressure, comprising: an arrangement for electrical impedance tomography for detecting an electrical impedance distribution along at least a two-dimensional cross-section through the human thorax at least at the end of an inspiration phase and at the end of an associated expiration phase; a device for dividing the detected electrical impedance distribution at the end of the inspiration phase and at the end of the expiration phase into a plurality of EIT pixels and for determining a value of the electrical impedance at the end of the inspiration phase and at the end of the expiration phase, as associated with a respective EIT pixel; and a device for automated adjustment of the pressure set by the respiration device on the basis of a comparison (i) of a deviation between the value of the electrical impedance at the end of the inspiration phase a
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: June 5, 2018
    Assignee: HAMILTON MEDICAL AG
    Inventors: Dominik Novotni, Thomas Laubscher
  • Patent number: 9616187
    Abstract: The invention relates to a device, with which one is to prevent a patient who breathes on Ms own and who desires a lower CO2-partial-pressure than is achieved by the set Ventilation from tiring. It comprises the following means for the regulation of a changing intensity of a mechanical Ventilation: • means for determining a target frequency RRsp, • means for determining a spontaneous frequency RRspont • means for comparing the spontaneous frequency RRspont with the target frequency RRsp. wherein adapting a Ventilation target value (% MinVol, V?gAsp) on account of the result of the comparison of the spontaneous frequency RRspont with the target frequency RRsp and • means for adapting the parameters determining the intensity of the Ventilation, on account of the Ventilation target value (% MinVol, V?gAsp). This so-called pump support System (PSS) is activated (PSS on) when the patient breathes in an adequately spontaneous manner (Criterion 1).
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: April 11, 2017
    Assignee: HAMILTON MEDICAL AG
    Inventors: Josef Brunner, Marc Wysocki, Thomas Laubscher
  • Publication number: 20170095601
    Abstract: A system for supporting the blood gas exchange by means of mechanical ventilation and extracorporeal blood gas exchange comprises a ventilation device for mechanical ventilation of the lungs of a patient, and an ECLS device for the extracorporeal blood gas exchange, wherein the ventilation system is designed to perform mechanical respiratory support by the ventilation device on the one hand and an extracorporeal blood gas exchange by the ECLS device on the other hand in coordinated, automated manner in order to support the gas exchange in the blood circulation of the patient, wherein the ECLS device sets a level of the extracorporeal blood gas exchange, and the ventilation device, on the basis of the level of the extracorporeal blood gas exchange set by the ECLS device, adjusts in automated manner to a level of the mechanical respiratory support.
    Type: Application
    Filed: June 3, 2015
    Publication date: April 6, 2017
    Inventors: Thomas LAUBSCHER, Dominik NOVOTNI
  • Publication number: 20160008561
    Abstract: There is suggested a system for automated adjustment of a pressure set by a respiration device, in particular a positive end-expiratory pressure and/or a maximum airway pressure, comprising: an arrangement for electrical impedance tomography for detecting an electrical impedance distribution along at least a two-dimensional cross-section through the human thorax at least at the end of an inspiration phase and at the end of an associated expiration phase; a device for dividing the detected electrical impedance distribution at the end of the inspiration phase and at the end of the expiration phase into a plurality of EIT pixels and for determining a value of the electrical impedance at the end of the inspiration phase and at the end of the expiration phase, as associated with a respective EIT pixel; and a device for automated adjustment of the pressure set by the respiration device on the basis of a comparison (i) of a deviation between the value of the electrical impedance at the end of the inspiration phase a
    Type: Application
    Filed: February 10, 2014
    Publication date: January 14, 2016
    Inventors: Dominik Novotni, Thomas Laubscher
  • Patent number: 9186070
    Abstract: The invention relates to an apparatus with sensing means suitable for sensing the inspiratory phase and the expiratory phase of each respiratory cycle of a respirated person from in each case at least one minimum and maximum amplitude of a circulation value within a single respiratory cycle, and with a computing device for calculating a variation of the amplitudes of the circulation value occurring within a said respiratory cycle.
    Type: Grant
    Filed: April 23, 2009
    Date of Patent: November 17, 2015
    Assignee: HAMILTON MEDICAL AG
    Inventors: Marc Wysocki, Josef Brunner, Ricardo Lopez Gasco, Dominik Novotni, Thomas Laubscher, Gion Durisch
  • Publication number: 20150217069
    Abstract: The invention suggests a system for automated adjustment of a pressure set by a ventilation device, in particular a positive and-expiratory pressure and/or a maximum airway pressure, the system comprising a pressure detection arrangement for detecting a transpulmonary pressure at the end of an expiration phase and/or for detecting a transpulmonary pressure at the end of an inspiration phase, and a means for automated adjustment of the pressure set by the ventilation device on the basis of the transpulmonary pressure detected at the end of the expiration phase and/or the transpulmonary pressure detected at the end of the inspiration phase.
    Type: Application
    Filed: August 5, 2013
    Publication date: August 6, 2015
    Inventors: Dominik Novotni, Thomas Laubscher
  • Patent number: 8528553
    Abstract: The invention relates to a device for the automated determination of the PEEP of a patient. Said device comprises sensors and a suitable electronic system for determining a pressure-volume characteristic curve during a P/V maneuver. The electronic system is designed in such a way as to generate, specifically in terms of breathing pressure, the difference between “lung volume during exhalation (Vdef)” and “lung volume during inhalation (Vinf)”, and to determine the maximum value of said difference. The breathing pressure is then determined, for which the volume difference has a value defined in relation to the maximum value of the volume difference. The device calculates a PEEP value on the basis of said determined breathing pressure value.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: September 10, 2013
    Assignee: Hamilton Medical AG
    Inventors: Marc Wysocki, Thomas Laubscher, Gion Durisch, Josef Brunner
  • Publication number: 20110257549
    Abstract: The invention relates to an apparatus with sensing means suitable for sensing the inspiratory phase and the expiratory phase of each respiratory cycle of a respirated person from in each case at least one minimum and maximum amplitude of a circulation value within a single respiratory cycle, and with a computing device for calculating a variation of the amplitudes of the circulation value occurring within a said respiratory cycle.
    Type: Application
    Filed: April 23, 2009
    Publication date: October 20, 2011
    Inventors: Marc Wysocki, Josef Brunner, Ricardo Lopez Gasco, Dominik Novotni, Thomas Laubscher, Gion Durisch
  • Publication number: 20090301492
    Abstract: The invention relates to a device for the automated determination of the PEEP of a patient. Said device comprises sensors and a suitable electronic system for determining a pressure-volume characteristic curve during a P/V manoeuvre. The electronic system is designed in such a way as to generate, specifically in terms of breathing pressure, the difference between “lung volume during exhalation (Vdef)” and “lung volume during inhalation (Vinf)”, and to determine the maximum value of said difference. The breathing pressure is then determined, for which the volume difference has a value defined in relation to the maximum value of the volume difference. The device calculates a PEEP value on the basis of said determined breathing pressure value.
    Type: Application
    Filed: November 14, 2007
    Publication date: December 10, 2009
    Applicant: HAMILTON MEDICAL AG
    Inventors: Marc Wysocki, Thomas Laubscher, Gion Durisch, Josef Brunner