Patents by Inventor Thomas Letson

Thomas Letson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070004123
    Abstract: Embodiments are an improved transistor structure and the method of fabricating the structure. In particular, a wet etch of an embodiment forms source and drain regions with an improved tip shape to improve the performance of the transistor by improving control of short channel effects, increasing the saturation current, improving control of the metallurgical gate length, increasing carrier mobility, and decreasing contact resistance at the interface between the source and drain and the silicide.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 4, 2007
    Inventors: Mark Bohr, Steven Keating, Thomas Letson, Anand Murthy, Donald O'Neill, Willy Rachmady
  • Publication number: 20060214231
    Abstract: A nonplanar semiconductor device having a semiconductor body formed on an insulating layer of a substrate. The semiconductor body has a top surface opposite a bottom surface formed on the insulating layer and a pair of laterally opposite sidewalls wherein the distance between the laterally opposite sidewalls at the top surface is greater than at the bottom surface. A gate dielectric layer is formed on the top surface of the semiconductor body and on the sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric layer on the top surface and sidewalls of the semiconductor body. A pair of source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Application
    Filed: May 23, 2006
    Publication date: September 28, 2006
    Inventors: Uday Shah, Brian Doyle, Justin Brask, Robert Chau, Thomas Letson
  • Publication number: 20060086977
    Abstract: A nonplanar semiconductor device having a semiconductor body formed on an insulating layer of a substrate. The semiconductor body has a top surface opposite a bottom surface formed on the insulating layer and a pair of laterally opposite sidewalls wherein the distance between the laterally opposite sidewalls at the top surface is greater than at the bottom surface. A gate dielectric layer is formed on the top surface of the semiconductor body and on the sidewalls of the semiconductor body. A gate electrode is formed on the gate dielectric layer on the top surface and sidewalls of the semiconductor body. A pair of source/drain regions are formed in the semiconductor body on opposite sides of the gate electrode.
    Type: Application
    Filed: October 25, 2004
    Publication date: April 27, 2006
    Inventors: Uday Shah, Brian Doyle, Justin Brask, Robert Chau, Thomas Letson
  • Publication number: 20050241764
    Abstract: Systems and techniques for improving azimuthal symmetry in an etch process are described. In some implementations, a baffle may be used to modify the flow of gas in an etch process. A baffle may include a baffle wall, which may have at least two regions of equal radial extent. A first region may have a first open area percentage, while a fourth region may have a fourth open area percentage. The first open area percentage is smaller than the fourth open area percentage. The baffle may be positioned so that the first region is toward a vacuum inlet.
    Type: Application
    Filed: May 3, 2004
    Publication date: November 3, 2005
    Inventors: Thomas Letson, Don O'Neill
  • Patent number: 6191016
    Abstract: A structure is provided comprising a semiconductor substrate, a gate oxide layer on the substrate, and a polysilicon layer on the gate oxide layer. A masking layer is formed on the polysilicon layer. The masking layer is then patterned into a mask utilizing conventional photolithographic techniques, but without patterning the polysilicon layer. The photoresist layer is then removed, whereafter the mask, which is patterned out of the masking layer, is utilized for patterning the polysilicon layer. The use of a carbon free mask for patterning the polysilicon layer, instead of a conventional photoresist layer containing carbon, results in less breakthrough through the gate oxide layer when the polysilicon layer is patterned. Less breakthrough through the gate oxide layer allows for the use of thinner gate oxide layers, and finally fabricated transistors having lower threshold voltages.
    Type: Grant
    Filed: January 5, 1999
    Date of Patent: February 20, 2001
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Thomas Letson, Patricia Stokley, Peter Charvat, Ralph Schweinfurth