Patents by Inventor Thomas Lizzi

Thomas Lizzi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11691335
    Abstract: The present invention relates to powder-layer three-dimensional printers (2) having a discrete supply hopper (340) and a recoater (20). The discrete supply hopper (340) is configured to transfer a build powder to the recoater (20) in a manner that enhances the uniformity of build powder layers that are dispensed from the recoater (20). In some embodiments, at least one of the discrete supply hopper and the powder hopper of the recoater is adapted to selectively contact the other, seal against the other, and/or have one partially inserted inside the other so as to diminish or prevent powder pluming during the transfer of build powder from the discrete supply hopper to the recoater.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: July 4, 2023
    Assignee: THE EXONE COMPANY
    Inventors: Jake Flick, Michael John McCoy, Joseph J. Bolt, Alec Hydock, Travis Maxwell Inks, Anthony S Dugan, Thomas Lizzi
  • Publication number: 20200147884
    Abstract: The present invention relates to powder-layer three-dimensional printers (2) having a discrete supply hopper (340) and a recoater (20). The discrete supply hopper (340) is configured to transfer a build powder to the recoater (20) in a manner that enhances the uniformity of build powder layers that are dispensed from the recoater (20). In some embodiments, at least one of the discrete supply hopper and the powder hopper of the recoater is adapted to selectively contact the other, seal against the other, and/or have one partially inserted inside the other so as to diminish or prevent powder pluming during the transfer of build powder from the discrete supply hopper to the recoater.
    Type: Application
    Filed: November 14, 2019
    Publication date: May 14, 2020
    Inventors: Jake Flick, Michael John McCoy, Joseph J. Bolt, Alec Hydock, Travis Maxwell Inks, Anthony S Dugan, Thomas Lizzi
  • Patent number: 10363730
    Abstract: Recoaters are described which are adapted for use in powder-layer three-dimensional printers. The recoaters comprise a mesh discharge device that is adapted to be selectively activated by the application of an agitation, e.g. a vibration. Such mesh discharge devices include a planar mesh, i.e. a screen or sieve, which is adapted to support a quantity of powder when the quantity of powder and the mesh are static and to dispense at least a portion of the quantity of powder when at least one of the quantity of powder and the mesh is agitated. Preferably, the mesh is disposed substantially horizontally, but may be disposed at an angle to the horizontal. Also described are powder-layer three-dimensional printers comprising such recoaters. In some embodiments, the powder-layer three-dimensional printers are adapted to space the mesh no more than about two to ten powder layer thicknesses from the top surface of the powder bed or substrate upon which a powder layer is to be deposited.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: July 30, 2019
    Assignee: The ExOne Company
    Inventors: Andrew P. Klein, Lawrence J. Voss, Anthony S. Dugan, Michael R. Orner, Thomas Lizzi
  • Patent number: 10144207
    Abstract: A three-dimensional printing apparatus is disclosed has one or more troughs for receiving excess deposited particulate. Such troughs may be positioned to receive the excess deposited particulate into a particulate receiving chamber of the trough. An evacuation chamber is located at the bottom of each trough. A partition separates the evacuation chamber from the receiving chamber of the trough. The partition is selectively perforated to permit a desired amount of the particulate to flow into the evacuation chamber from the receiving chamber. The evacuation chamber is connected to a vacuum source to periodically or continuously draw ambient gas from a gas inlet to the evacuation chamber and/or from the receiving chamber through the perforations of the partition and then through the evacuation chamber toward the vacuum source to entrain an amount of the particulate and carry the entrained particulate out of the evacuation chamber.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: December 4, 2018
    Assignee: The ExOne Company
    Inventors: Daniel T. Brunermer, Anthony S. Dugan, Thomas Lizzi
  • Publication number: 20180207872
    Abstract: A device for applying powder layers across a substrate or atop an existing powder bed is disclosed. The device has particular utility in embodiments which are adapted for use in depositing powder layers for three-dimensional printing and as part of a three-dimensional printing apparatus. The device utilizes a conveyor belt to transfer powder from a powder reservoir and deposit it upon powder bed or other substrate. In some embodiments, the device utilizes a conveyor belt in conjunction with a powder deflector to transfer powder from a powder reservoir and deposit it upon powder bed or other substrate. In some embodiments the conveyor belt has a downwardly inclined section. In some embodiments, a downwardly inclined chute is used in conjunction with the conveyor belt.
    Type: Application
    Filed: April 28, 2016
    Publication date: July 26, 2018
    Inventors: Andrew P. Klein, Daniel T. Brunermer, Michael J. McCoy, Anthony S. Dugan, Lawrence J. Voss, Thomas Lizzi
  • Publication number: 20170252973
    Abstract: Methods are presented for controlling warpage during heat treatment of a 3DPBJ article having a cavity extending inwardly from an outside surface wherein a 3DPBJ article is 3DPBJ printed from a build powder as is a 3DPBJ object which is adap ted to be contactingly insertable into the cavity of the 3DP BJ article. At least a portion of the 3DPBJ article cavity surface and/or at least a portion of the surface of the 3DPBJ object is treated to prevent the 3DPBJ object from becoming bonded to the 3DPBJ article during the heat treatment. The 3DPBJ object is inserted into the 3DPBJ article cavity and the 3DPBJ article and the 3DPBJ object are heat treated to transform the 3DPBJ article into the intended article itself and the 3DPBJ object into a heat treated 3DPBJ object. The heat treated 3DPBJ object is removed from the article.
    Type: Application
    Filed: October 15, 2015
    Publication date: September 7, 2017
    Inventors: Richard D. Clark, Douglas P. Tuk, Thomas G. Pasterik, Brandon Cary, Thomas Lizzi
  • Publication number: 20170203514
    Abstract: Methods and apparatuses are disclosed for faster curing of three-dimensionally inkjet printed articles (88) having a curable binder. After the printing of the article (88) is completed, a gas flow is driven in the powder bed (90) that surrounds the article (88). The build box (54) which contains the powder bed (90) may include one or more gas-permeable features (14) in contact with the powder bed (90). The gas-permeable feature (14) may be in the form a plurality of gas-permeable disks (18) which are flush with the supporting surface (26) of the build box floor (12) and which are in fluid communication with the channels (28) of the bottom surface (30) of the build box floor (12). Curing apparatuses (50) are disclosed which have a cavity (68) for receiving the build box (54) and a gas propulsion device (74a) for driving a gas flow in the build box (54). Methods also include driving gas flow in the powder bed (90) by way of wands (230) and paddles (240).
    Type: Application
    Filed: July 15, 2015
    Publication date: July 20, 2017
    Inventors: Michael J. MCCOY, Thomas LIZZI
  • Publication number: 20170120536
    Abstract: A three-dimensional printing apparatus is disclosed has one or more troughs for receiving excess deposited particulate. Such troughs may be positioned to receive the excess deposited particulate into a particulate receiving chamber of the trough. An evacuation chamber is located at the bottom of each trough. A partition separates the evacuation chamber from the receiving chamber of the trough. The partition is selectively perforated to permit a desired amount of the particulate to flow into the evacuation chamber from the receiving chamber. The evacuation chamber is connected to a vacuum source to periodically or continuously draw ambient gas from a gas inlet to the evacuation chamber and/or from the receiving chamber through the perforations of the partition and then through the evacuation chamber toward the vacuum source to entrain an amount of the particulate and carry the entrained particulate out of the evacuation chamber.
    Type: Application
    Filed: May 7, 2015
    Publication date: May 4, 2017
    Applicant: The ExOne Company
    Inventors: Daniel T. Brunermer, Anthony S. Dugan, Thomas Lizzi
  • Publication number: 20170120329
    Abstract: Methods are presented for making sintered articles from water-atomized nickel-based superalloy powders. Three-dimensional binder jet printing is used to make a printed article from the powder. The printed article is liquid phase sintered without slumping at a temperature at which at least fifteen volume percent of the powder is liquid during sintering.
    Type: Application
    Filed: May 26, 2015
    Publication date: May 4, 2017
    Inventors: Michael J. Orange, Howard A. Kuhn, Paul P. Knor, Thomas Lizzi
  • Publication number: 20170066190
    Abstract: Recoaters are described which are adapted for use in powder-layer three-dimensional printers. The recoaters comprise a mesh discharge device that is adapted to be selectively activated by the application of an agitation, e.g. a vibration. Such mesh discharge devices include a planar mesh, i.e. a screen or sieve, which is adapted to support a quantity of powder when the quantity of powder and the mesh are static and to dispense at least a portion of the quantity of powder when at least one of the quantity of powder and the mesh is agitated. Preferably, the mesh is disposed substantially horizontally, but may be disposed at an angle to the horizontal. Also described are powder-layer three-dimensional printers comprising such recoaters. In some embodiments, the powder-layer three-dimensional printers are adapted to space the mesh no more than about two to ten powder layer thicknesses from the top surface of the powder bed or substrate upon which a powder layer is to be deposited.
    Type: Application
    Filed: August 31, 2016
    Publication date: March 9, 2017
    Inventors: Andrew P. Klein, Lawrence J. Voss, Anthony S. Dugan, Michael R.. Orner, Thomas Lizzi
  • Publication number: 20160332373
    Abstract: Methods and systems (2) are disclosed for making articles (114) by three-dimensional printing. The methods include selectively printing by jet deposition on successive layers (4) of a build material powder (10) at least one of a first binder fluid and a second binder fluid. At least one of the first and second binder fluids includes a particulate matter (16) having mean particle size diameter which is less than that of the build material powder (10). The first binder fluid is characteristically different from the second binder fluid. The particulate matter (16) selectively deposited with a binder fluid can be used to locally tailor the physical properties of the article (114), e.g. by alloying with the build material powder, increasing densification, acting as a local infiltrant or infiltrant stop during heat treatment, locally modulating the local stress fields (e.g. by a mismatch of thermal coefficients of expansion), etc.
    Type: Application
    Filed: December 17, 2014
    Publication date: November 17, 2016
    Applicant: The ExOne Company
    Inventors: Howard A. Kuhn, Jason W. Plymire, Rick D. Lucas, Jesse M. Blacker, Daniel T. Brunermer, Thomas Lizzi
  • Publication number: 20160325495
    Abstract: Methods and systems (20) are disclosed for making articles by three-dimensional printing. The methods include three-dimensionally printing articles by selectively jet-depositing a particle-bearing binder fluid (14) upon successive layers (4) of a build material powder (10) such that the particles (16) deposited with the binder fluid (14) increase the apparent density of the as-printed article. The particulate matter (16) of the binder fluid (12) is smaller than the mean particle size of the build material powder (10). Preferably, this jet-deposited particulate matter (16) has a mean particle size that is larger than about 1 to and smaller than or equal to 50 microns. The jet-deposited matter (16) acts to fill in the interparticle interstices of the build material powder (10) thereby simultaneously increasing the density of the printed article and improving its surface roughness and contour resolution, which in turn, improves the surface finish of the final article.
    Type: Application
    Filed: December 17, 2014
    Publication date: November 10, 2016
    Inventors: Howard A. Kuhn, Jason W. Plymire, Rick D. Lucas, Jesse Blacker, Daniel T. Brunermer, Thomas Lizzi
  • Publication number: 20160243621
    Abstract: Methods are disclosed for making a hot isostatic pressing container for hot isostatic pressing a powder material to form an article comprising three-dimensionally printing the container from a build powder, the container having a cavity for receiving the powder material and an outer section having an outer surface, the cavity having a surface and being shaped and sized so that hot isostatic pressing the container with the powder material within the cavity results in the production of the article. Methods are also disclosed for making the hot isostatically pressed article using the container.
    Type: Application
    Filed: October 15, 2014
    Publication date: August 25, 2016
    Applicant: The ExOne Company
    Inventors: Rick D. Lucas, Howard A. Kuhn, Michael J. Orange, Thomas Lizzi
  • Patent number: 5213610
    Abstract: A method for atomizing a titanium-based material to particulates in a controlled atmosphere. In the method, titanium is skull melted in a crucible. The molten titanium-based material is transferred to a heated tundish. The molten titanium-based material may be stabilized in the heated tundish and then formed into a free-falling stream. The free-falling stream of the molten titanium-based material is impinged with an inert gas jet to atomize the molten titanium-based material. The method also includes cooling the atomized titanium-based material, and collecting the cooled atomized titanium-based material.
    Type: Grant
    Filed: January 6, 1992
    Date of Patent: May 25, 1993
    Assignee: Crucible Materials Corporation
    Inventors: Charles F. Yolton, Thomas Lizzi, John H. Moll
  • Patent number: 4999051
    Abstract: A system and method for atomizing a titanium-based material to particulates in a controlled atmosphere. The system includes a crucible for skull melting a titanium-based material. The molten titanium-based material is transferred to a tundish for receiving the molten titanium-based material. The tundish has a bottom portion with an aperture formed therein and is heated. A molten metal nozzle for forming the molten titanium-based material into a free-falling stream exiting from the tundish is provided, the molten metal nozzle being coaxially aligned with the aperture of the tundish. A baffle may be disposed in the tundish for stabilizing the free-falling stream of the molten titanium-based material. The molten titanium-based material is atomized by impinging the free-falling stream of the molten titanium-based material with an inert gas jet issuing from a gas nozzle.
    Type: Grant
    Filed: September 27, 1989
    Date of Patent: March 12, 1991
    Assignee: Crucible Materials Corporation
    Inventors: Charles F. Yolton, Thomas Lizzi, John H. Moll
  • Patent number: 4564401
    Abstract: A method for producing iron-silicon alloy articles having an improved combination of hot workability and electrical properties; the method comprises taking a molten alloy mass of an iron-silicon alloy from which the article is to be made and gas atomizing it to form alloy particles which are quickly cooled to solidification temperature. These alloy particles are then hot isostatically pressed to form a substantially fully dense article. The fully dense article is then hot rolled to sheet form suitable for example for use as laminates in the manufacture of transformer cores.
    Type: Grant
    Filed: September 29, 1983
    Date of Patent: January 14, 1986
    Assignee: Crucible Materials Corporation
    Inventors: George A. Strichman, Edward J. Dulis, Kalatur S. V. L. Narasimhan, Thomas Lizzi