Patents by Inventor Thomas M. Siebel

Thomas M. Siebel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250131028
    Abstract: An agent-based website search interface utilizes a multimodal model to enhance enterprise operations. Data agents collect and process diverse inputs, while an orchestrator manages these agents. The system leverages machine learning models to generate insights and automate decision-making processes. It includes tools for data visualization and validation, ensuring accuracy and reliability. By integrating generative AI, the interface provides advanced search functionalities, improving user experience and operational efficiency. This facilitates seamless interaction to answer context specific questions from complex data, offering a robust solution for enterprise-level search and analysis.
    Type: Application
    Filed: December 20, 2024
    Publication date: April 24, 2025
    Inventors: Thomas M. Siebel, Nikhil Krishnan, Louis Poirier, Romain Juban, Michael Haines, Yushi Homma, Riyad Muradov
  • Publication number: 20250124069
    Abstract: An agent-based website search interface utilizes a multimodal model to enhance enterprise operations. Data agents collect and process diverse inputs, while an orchestrator manages these agents. The system leverages machine learning models to generate insights and automate decision-making processes. It includes tools for data visualization and validation, ensuring accuracy and reliability. By integrating generative AI, the interface provides advanced search functionalities, improving user experience and operational efficiency. This facilitates seamless interaction to answer context specific questions from complex data, offering a robust solution for enterprise-level search and analysis.
    Type: Application
    Filed: December 20, 2024
    Publication date: April 17, 2025
    Inventors: Thomas M. Siebel, Nikhil Krishnan, Louis Poirier, Romain Juban, Michael Haines, Yushi Homma, Riyad Muradov
  • Patent number: 12265570
    Abstract: Systems and methods are configured to generate a set of potential responses to a prompt using one or more data models with data from at least a plurality of data domains of an enterprise information environment that includes access controls. A deterministic response is selected from the set of potential responses based on scoring of the validation data and restricting based on access controls in view of profile information associated with the prompt. These enterprise generative AI systems and methods support granular enterprise access controls, privacy, and security requirements, and provide traceable references and links to source information underlying the generative AI insights. These systems and methods enable dramatically increased utility for enterprise users to access information, analyses, and predictive analytics associated with and derived from a combination of enterprise and external information systems.
    Type: Grant
    Filed: December 15, 2023
    Date of Patent: April 1, 2025
    Assignee: C3.ai, Inc.
    Inventors: Thomas M. Siebel, Nikhil Krishnan, Louis Poirier, Michael Haines, Romain Juban
  • Publication number: 20250094474
    Abstract: An agent-based website search interface utilizes a multimodal model to enhance enterprise operations. Data agents collect and process diverse inputs, while an orchestrator manages these agents. The system leverages machine learning models to generate insights and automate decision-making processes. It includes tools for data visualization and validation, ensuring accuracy and reliability. By integrating generative AI, the interface provides advanced search functionalities, improving user experience and operational efficiency. This facilitates seamless interaction to answer context specific questions from complex data, offering a robust solution for enterprise-level search and analysis.
    Type: Application
    Filed: December 3, 2024
    Publication date: March 20, 2025
    Inventors: Thomas M. Siebel, Nikhil Krishnan, Louis Poirier, Romain Juban, Michael Haines, Yushi Homma, Riyad Muradov
  • Publication number: 20240419713
    Abstract: Systems and methods managing, by an orchestrator, a plurality of agents to generate a response to an input. The orchestrator employs one or more multimodal models such as a large language models to process or deconstruct the prompt into a series of instructions for different agents. Each agent employs one or more machine-learning models to process disparate inputs or different portions of an input associated with the prompt. The system generates, by the orchestrator, a natural language summary of the structured and unstructured data records. The system formulates output and transmits the natural language summary of the data records.
    Type: Application
    Filed: August 30, 2024
    Publication date: December 19, 2024
    Inventors: Thomas M. Siebel, Nikhil Krishnan, Louis Poirier, Romain Juban, Michael Haines, Yushi Homma, Riyad Muradov
  • Publication number: 20240370709
    Abstract: An anti-hallucination and attribution architecture for enterprise generative AI systems is disclosed herein which increases the accuracy and reliability of generative artificial intelligence content (e.g., responses or answers) by detecting, preventing, and mitigating hallucination. The anti-hallucination and attribution architecture can be added to deployed generative artificial intelligence systems as a separate tool or module, which allows it to work with the deployed systems without having to retool or redesign those systems. The anti-hallucination and attribution architecture can also be deployed with minimal impact on live production systems.
    Type: Application
    Filed: April 30, 2024
    Publication date: November 7, 2024
    Inventors: Thomas M. Siebel, Sina Khoshfetrat Pakazad, Romain Juban, Michael Haines, Louis Poirier
  • Patent number: 12111859
    Abstract: Systems and methods managing, by an orchestrator, a plurality of agents to generate a response to an input. The orchestrator employs one or more multimodal models such as a large language models to process or deconstruct the prompt into a series of instructions for different agents. Each agent employs one or more machine-learning models to process disparate inputs or different portions of an input associated with the prompt. The system generates, by the orchestrator, a natural language summary of the structured and unstructured data records. The system formulates output and transmits the natural language summary of the data records.
    Type: Grant
    Filed: December 15, 2023
    Date of Patent: October 8, 2024
    Assignee: C3.ai, Inc.
    Inventors: Thomas M. Siebel, Nikhil Krishnan, Louis Poirier, Romain Juban, Michael Haines, Yushi Homma, Riyad Muradov
  • Publication number: 20240256561
    Abstract: Systems, methods, and devices for a cyberphysical (IoT) software application development platform based upon a model driven architecture and derivative IoT SaaS applications are disclosed herein. The system may include concentrators to receive and forward time-series data from sensors or smart devices. The system may include message decoders to receive messages comprising the time-series data and storing the messages on message queues. The system may include a persistence component to store the time-series data in a key-value store and store the relational data in a relational database. The system may include a data services component to implement a type layer over data stores. The system may also include a processing component to access and process data in the data stores via the type layer, the processing component comprising a batch processing component and an iterative processing component.
    Type: Application
    Filed: April 8, 2024
    Publication date: August 1, 2024
    Inventors: Thomas M. Siebel, Edward Y. Abbo, Houman Behzadi, John Coker, Scott Kurinskas, Thomas Rothwein, David Tchankotadze
  • Publication number: 20240202225
    Abstract: Systems and methods managing, by an orchestrator, a plurality of agents to generate a response to an input. The orchestrator employs one or more multimodal models such as a large language models to process or deconstruct the prompt into a series of instructions for different agents. Each agent employs one or more machine-learning models to process disparate inputs or different portions of an input associated with the prompt. The system generates, by the orchestrator, a natural language summary of the structured and unstructured data records. The system formulates output and transmits the natural language summary of the data records.
    Type: Application
    Filed: December 15, 2023
    Publication date: June 20, 2024
    Inventors: Thomas M. Siebel, Nikhil Krishnan, Louis Poirier, Romain Juban, Michael Haines, Yushi Homma, Riyad Muradov
  • Publication number: 20240202221
    Abstract: Systems and methods are configured to generate a set of potential responses to a prompt using one or more data models with data from at least a plurality of data domains of an enterprise information environment that includes access controls. A deterministic response is selected from the set of potential responses based on scoring of the validation data and restricting based on access controls in view profile information associated with the prompt. These enterprise generative AI systems and methods support granular enterprise access controls, privacy, and security requirements. enterprise generative AI providing traceable references and links to source information underlying the generative AI insights. These systems and methods enable dramatically increased utility for enterprise users to information, analyses, and predictive analytics associated with and derived from a combination of enterprise and external information systems.
    Type: Application
    Filed: December 15, 2023
    Publication date: June 20, 2024
    Inventors: Thomas M. Siebel, Nikhil Krishnan, Louis Poirier, Michael Haines, Romain Juban
  • Patent number: 11954112
    Abstract: Systems, methods, and devices for a cyberphysical (IoT) software application development platform based upon a model driven architecture and derivative IoT SaaS applications are disclosed herein. The system may include concentrators to receive and forward time-series data from sensors or smart devices. The system may include message decoders to receive messages comprising the time-series data and storing the messages on message queues. The system may include a persistence component to store the time-series data in a key-value store and store the relational data in a relational database. The system may include a data services component to implement a type layer over data stores. The system may also include a processing component to access and process data in the data stores via the type layer, the processing component comprising a batch processing component and an iterative processing component.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: April 9, 2024
    Assignee: C3.ai, Inc.
    Inventors: Thomas M. Siebel, Edward Y. Abbo, Houman Behzadi, John Coker, Scott Kurinskas, Thomas Rothwein, David Tchankotadze
  • Publication number: 20240054570
    Abstract: The present disclosure provides systems and methods that may advantageously apply machine learning to accurately identify and investigate potential money laundering. In an aspect, the present disclosure provides a computer-implemented method for anti-money laundering (AML) analysis, comprising: (a) obtaining, by the computer, a dataset comprising a plurality of accounts, each of the plurality of accounts corresponding to an account holder among a plurality of account holders, wherein each account of the plurality of accounts comprises a plurality of account variables, wherein the plurality of account variables comprises financial transactions; (b) applying, by the computer, a trained algorithm to the dataset to generate a money laundering risk score for each of the plurality of account holders; and (c) identifying, by the computer, a subset of the plurality of account holders for investigation based at least on the money laundering risk scores of the plurality of account holders.
    Type: Application
    Filed: October 19, 2023
    Publication date: February 15, 2024
    Inventors: Romain Florian Juban, Adrian Conrad Rami, Anton Rubisov, Thomas M. Siebel
  • Publication number: 20240045659
    Abstract: Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.
    Type: Application
    Filed: October 23, 2023
    Publication date: February 8, 2024
    Inventors: Thomas M. Siebel, Edward Y. Abbo, Houman Behzadi, Avid Boustani, Nikhil Krishnan, Kuenley Chiu, Henrik Ohlsson, Louis Poirier, Jeremy Kolter
  • Patent number: 11886843
    Abstract: Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating toa plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.
    Type: Grant
    Filed: August 1, 2022
    Date of Patent: January 30, 2024
    Assignee: C3.ai, Inc.
    Inventors: Thomas M. Siebel, Edward Y. Abbo, Houman Behzadi, Avid Boustani, Nikhil Krishnan, Kuenley Chiu, Henrik Ohlsson, Louis Poirier, Jeremy Kolter
  • Patent number: 11810204
    Abstract: The present disclosure provides systems and methods that may advantageously apply machine learning to accurately identify and investigate potential money laundering. In an aspect, the present disclosure provides a computer-implemented method for anti-money laundering (AML) analysis, comprising: (a) obtaining, by the computer, a dataset comprising a plurality of accounts, each of the plurality of accounts corresponding to an account holder among a plurality of account holders, wherein each account of the plurality of accounts comprises a plurality of account variables, wherein the plurality of account variables comprises financial transactions; (b) applying, by the computer, a trained algorithm to the dataset to generate a money laundering risk score for each of the plurality of account holders; and (c) identifying, by the computer, a subset of the plurality of account holders for investigation based at least on the money laundering risk scores of the plurality of account holders.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: November 7, 2023
    Assignee: C3.ai, Inc.
    Inventors: Romain Florian Juban, Adrian Conrad Rami, Anton Rubisov, Thomas M. Siebel
  • Publication number: 20230291755
    Abstract: A method includes obtaining data associated with operation of a monitored system. The method also includes using one or more first machine learning models to identify anomalies in the monitored system based on the obtained data, where each anomaly identifies an anomalous behavior. The method further includes using one or more second machine learning models to classify each of at least some of the identified anomalies into one of multiple classifications. Different ones of the classifications are associated with different types of cyberthreats to the monitored system, and the identified anomalies are classified based on risk scores determined using the one or more second machine learning models. In addition, the method includes identifying, for each of at least some of the anomalies, one or more actions to be performed in order to counteract the cyberthreat associated with the anomaly.
    Type: Application
    Filed: March 10, 2022
    Publication date: September 14, 2023
    Inventors: Thomas M. Siebel, Aaron W. Brown, Varun Badrinath Krishna, Nikhil Krishnan, Ansh J. Hirani
  • Publication number: 20230027296
    Abstract: Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating toa plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.
    Type: Application
    Filed: August 1, 2022
    Publication date: January 26, 2023
    Inventors: Thomas M. Siebel, Edward Y. Abbo, Houman Behzadi, Avid Boustani, Nikhil Krishnan, Kuenley Chiu, Henrik Ohlsson, Louis Poirier, Jeremy Kolter
  • Publication number: 20220405775
    Abstract: A method includes curating CRM data by employing a type system of a model-driven architecture and selecting an AI CRM application from a group of applications. Each CRM application may generate one or more use case insights with one or more objectives. The method also includes obtaining one or more data models including an industry-specific data model from the curated CRM data and orchestrating a plurality of machine learning models for the selected CRM application with the obtained data model(s) to determine one or more machine learning models effective for at least one objective of the selected CRM application. The method further includes applying the determined machine learning model(s) and the obtained data model(s) to predict probabilities that optimize the at least one objective and using the predicted probabilities to apply at least one of the one or more use case insights that optimizes the at least one objective.
    Type: Application
    Filed: June 21, 2022
    Publication date: December 22, 2022
    Inventors: Thomas M. Siebel, Houman Behzadi, Nikhil Krishnan, Varun Badrinath Krishna, Anna L. Ershova, Mark Woollen, Ruiwen An, Gabriele Boncoraglio, Aaron James Christensen, Kush Khosla, Hoda Razavi, Ryan Compton
  • Publication number: 20220405860
    Abstract: The present disclosure provides systems and methods that may advantageously apply machine learning to accurately identify and investigate potential money laundering. In an aspect, the present disclosure provides a computer-implemented method for anti-money laundering (AML) analysis, comprising: (a) obtaining, by the computer, a dataset comprising a plurality of accounts, each of the plurality of accounts corresponding to an account holder among a plurality of account holders, wherein each account of the plurality of accounts comprises a plurality of account variables, wherein the plurality of account variables comprises financial transactions; (b) applying, by the computer, a trained algorithm to the dataset to generate a money laundering risk score for each of the plurality of account holders; and (c) identifying, by the computer, a subset of the plurality of account holders for investigation based at least on the money laundering risk scores of the plurality of account holders.
    Type: Application
    Filed: February 4, 2022
    Publication date: December 22, 2022
    Inventors: Romain Florian JUBAN, Adrian Conrad RAMI, Anton RUBISOV, Thomas M. SIEBEL
  • Patent number: 11449315
    Abstract: Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: September 20, 2022
    Assignee: C3.AI, INC.
    Inventors: Thomas M. Siebel, Edward Y. Abbo, Houman Behzadi, Avid Boustani, Nikhil Krishnan, Kuenley Chiu, Henrik Ohlsson, Louis Poirier, Zico Kolter