Patents by Inventor Thomas M. Swanick

Thomas M. Swanick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11166929
    Abstract: The present invention is directed toward fatty acid-based particles, and methods of making such particles. The particles can be associated with an additional, therapeutic agent. Also provided herein is a method of forming fatty acid particles, comprising associating a cross-linked, fatty acid-derived biomaterial with a cryogenic liquid; and fragmenting the bio material/cryogenic liquid composition, such that fatty acid particles are formed. The particles can be used for a variety of therapeutic applications.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: November 9, 2021
    Assignee: ATRIUM MEDICAL CORPORATION
    Inventors: Thomas M. Swanick, Joseph Ferraro, Lisa Rogers, Paul Martakos
  • Patent number: 11083823
    Abstract: Exemplary embodiments of the present invention provide adhesion barriers having anti-adhesion and tissue fixating properties. The adhesion barriers are formed of fatty acid based films. The fatty acid-based films may be formed from fatty acid-derived biomaterials. The films may be coated with, or may include, tissue fixating materials to create the adhesion barrier. The adhesion barriers are well tolerated by the body, have anti-inflammation properties, fixate, well to tissue, and have a residence time sufficient to prevent post-surgical adhesions.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: August 10, 2021
    Assignee: ATRIUM MEDICAL CORPORATION
    Inventors: Thomas M. Swanick, Joe Bienkiewicz, Joseph Ferraro, Paul Martakos, Keith M. Faucher, Alicia Dale
  • Publication number: 20210002394
    Abstract: A method of making expanded fluoropolymer articles thermally bonds portions of expanded fluoropolymers together, without using an adhesive or crushing force, to produce stronger bonds at the joint between the expanded fluoropolymers than the bonds within the constituent expanded fluoropolymers. The method involves placing the portions of expanded fluoropolymers to be thermally bonded together in intimate contact with each other after wet-stretching the expanded fluoropolymers, and removing the wetting agent used to wet-stretch the expanded fluoropolymers, without subsequent expansion or stretching, to yield an expanded fluoropolymer article exhibiting unexpected and superior properties that can be used in a variety of medical and industrial applications.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Applicant: ATRIUM MEDICAL CORPORATION
    Inventor: Thomas M. SWANICK
  • Patent number: 10869902
    Abstract: A cured non-polymeric gel including a plurality of non-polymeric cross-links. The non-polymeric cross-links result from curing an oil or oil composition at selected curing conditions to achieve a desired amount of cross-linking to form the non-polymeric gel. The desired amount of cross-linking is selected based on a desired rate of degradation of the gel after the gel is implanted. The oil or oil composition comprises one or more of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or alpha-linolenic acid (ALA).
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: December 22, 2020
    Assignee: ATRIUM MEDICAL CORPORATION
    Inventors: Roger Labrecque, Philip McNamara, Joseph Ferraro, Lisa Rogers, Paul Martakos, Theodore Karwoski, Steve A. Herweck, Keith M. Faucher, Thomas M. Swanick
  • Patent number: 10808054
    Abstract: A method of making expanded fluoropolymer articles thermally bonds portions of expanded fluoropolymers together, without using an adhesive or crushing force, to produce stronger bonds at the joint between the expanded fluoropolymers than the bonds within the constituent expanded fluoropolymers. The method involves placing the portions of expanded fluoropolymers to be thermally bonded together in intimate contact with each other after wet-stretching the expanded fluoropolymers, and removing the wetting agent used to wet-stretch the expanded fluoropolymers, without subsequent expansion or stretching, to yield an expanded fluoropolymer article exhibiting unexpected and superior properties that can be used in a variety of medical and industrial applications.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 20, 2020
    Assignee: ATRIUM MEDICAL CORPORATION
    Inventor: Thomas M. Swanick
  • Patent number: 10285964
    Abstract: The present invention is directed toward fatty acid-based particles, and methods of making such particles. The particles can be associated with an additional, therapeutic agent. Also provided herein is a method of forming fatty acid particles, comprising associating a cross-linked, fatty acid-derived biomaterial with a cryogenic liquid; and fragmenting the bio material/cryogenic liquid composition, such that fatty acid particles are formed. The particles can be used for a variety of therapeutic applications.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: May 14, 2019
    Assignee: ATRIUM MEDICAL CORPORATION
    Inventors: Thomas M. Swanick, Joseph Ferraro, Lisa Rogers, Paul Martakos
  • Publication number: 20190054053
    Abstract: The present invention is directed toward fatty acid-based particles, and methods of making such particles. The particles can be associated with an additional, therapeutic agent. Also provided herein is a method of forming fatty acid particles, comprising associating a cross-linked, fatty acid-derived biomaterial with a cryogenic liquid; and fragmenting the bio material/cryogenic liquid composition, such that fatty acid particles are formed. The particles can be used for a variety of therapeutic applications.
    Type: Application
    Filed: October 19, 2018
    Publication date: February 21, 2019
    Applicant: ATRIUM MEDICAL CORPORATION
    Inventors: Thomas M. SWANICK, Joseph FERRARO, Lisa ROGERS, Paul MARTAKOS
  • Publication number: 20180200306
    Abstract: A cured non-polymeric gel including a plurality of non-polymeric cross-links. The non-polymeric cross-links result from curing an oil or oil composition at selected curing conditions to achieve a desired amount of cross-linking to form the non-polymeric gel. The desired amount of cross-linking is selected based on a desired rate of degradation of the gel after the gel is implanted. The oil or oil composition comprises one or more of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or alpha-linolenic acid (ALA).
    Type: Application
    Filed: December 14, 2017
    Publication date: July 19, 2018
    Applicant: Atrium Medical Corporation
    Inventors: Roger LABRECQUE, Philip MCNAMARA, Joseph FERRARO, Lisa ROGERS, Paul MARTAKOS, Theodore KARWOSKI, Steve A. HERWECK, Keith M. FAUCHER, Thomas M. SWANICK
  • Patent number: 10016465
    Abstract: A cured non-polymeric gel including a plurality of non-polymeric cross-links. The non-polymeric cross-links result from curing an oil or oil composition at selected curing conditions to achieve a desired amount of cross-linking to form the non-polymeric get. The desired amount of cross-linking is selected based on a desired rate of degradation of the gel after the gel is implanted. The oil or oil composition comprises one or more of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or alphalinolenic acid (ALA).
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: July 10, 2018
    Assignee: ATRIUM MEDICAL CORPORATION
    Inventors: Roger Labrecque, Philip McNamara, Joseph Ferraro, Lisa Rogers, Paul Martakos, Theodore Karwoski, Steve A. Herweck, Keith M. Faucher, Thomas M. Swanick
  • Publication number: 20180133376
    Abstract: Exemplary embodiments of the present invention provide adhesion barriers having anti-adhesion and tissue fixating properties. The adhesion barriers are formed of fatty acid based films. The fatty acid-based films may be formed from fatty acid-derived biomaterials. The films may be coated with, or may include, tissue fixating materials to create the adhesion barrier. The adhesion barriers are well tolerated by the body, have anti-inflammation properties, fixate, well to tissue, and have a residence time sufficient to prevent post-surgical adhesions.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 17, 2018
    Applicant: ATRIUM MEDICAL CORPORATION
    Inventors: Thomas M. SWANICK, Joe BIENKIEWICZ, Joseph FERRARO, Paul MARTAKOS, Keith M. FAUCHER, Alicia DALE
  • Patent number: 9844611
    Abstract: Exemplary embodiments of the present invention provide adhesion barriers having anti-adhesion and tissue fixating properties. The adhesion barriers are formed of fatty acid based films. The fatty acid-based films may be formed from fatty acid-derived biomaterials. The films may be coated with, or may include, tissue fixating materials to create the adhesion barrier. The adhesion barriers are well tolerated by the body, have anti-inflammation properties, fixate, well to tissue, and have a residence time sufficient to prevent post-surgical adhesions.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: December 19, 2017
    Assignee: Atrium Medical Corporation
    Inventors: Thomas M. Swanick, Joe Bienkiewicz, Joseph Ferraro, Paul Martakos, Keith M. Faucher, Alicia Dale
  • Publication number: 20160324816
    Abstract: The present invention is directed toward fatty acid-based particles, and methods of making such particles. The particles can be associated with an additional, therapeutic agent. Also provided herein is a method of forming fatty acid particles, comprising associating a cross-linked, fatty acid-derived biomaterial with a cryogenic liquid; and fragmenting the bio material/cryogenic liquid composition, such that fatty acid particles are formed. The particles can be used for a variety of therapeutic applications.
    Type: Application
    Filed: July 22, 2016
    Publication date: November 10, 2016
    Applicant: ATRIUM MEDICAL CORPORATION
    Inventors: Thomas M. SWANICK, Joseph FERRARO, Lisa ROGERS, Paul MARTAKOS
  • Patent number: 9427423
    Abstract: The present invention is directed toward fatty acid-based particles, and methods of making such particles. The particles can be associated with an additional, therapeutic agent. Also provided herein is a method of forming fatty acid particles, comprising associating a cross-linked, fatty acid-derived biomaterial with a cryogenic liquid; and fragmenting the bio material/cryogenic liquid composition, such that fatty acid particles are formed. The particles can be used for a variety of therapeutic applications.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: August 30, 2016
    Assignee: ATRIUM MEDICAL CORPORATION
    Inventors: Thomas M. Swanick, Joseph Ferraro, Lisa Rogers, Paul Martakos
  • Publication number: 20160206789
    Abstract: Exemplary embodiments of the present invention provide adhesion barriers having anti-adhesion and tissue fixating properties. The adhesion barriers are formed of fatty acid based films. The fatty acid-based films may be formed from fatty acid-derived biomaterials. The films may be coated with, or may include, tissue fixating materials to create the adhesion barrier. The adhesion barriers are well tolerated by the body, have anti-inflammation properties, fixate, well to tissue, and have a residence time sufficient to prevent post-surgical adhesions.
    Type: Application
    Filed: January 20, 2016
    Publication date: July 21, 2016
    Applicant: ATRIUM MEDICAL CORPORATION
    Inventors: Thomas M. Swanick, Joe Bienkiewicz, Joseph Ferraro, Paul Martakos, Keith M. Faucher, Alicia Dale
  • Patent number: 9278161
    Abstract: Exemplary embodiments of the present invention provide adhesion barriers having anti-adhesion and tissue fixating properties. The adhesion barriers are formed of fatty acid based films. The fatty acid-based films may be formed from fatty acid-derived biomaterials. The films may be coated with, or may include, tissue fixating materials to create the adhesion barrier. The adhesion barriers are well tolerated by the body, have anti-inflammation properties, fixate, well to tissue, and have a residence time sufficient to prevent post-surgical adhesions.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: March 8, 2016
    Assignee: Atrium Medical Corporation
    Inventors: Thomas M. Swanick, Joe Bienkiewicz, Joseph Ferraro, Paul Martakos, Keith M. Faucher, Alicia Dale
  • Publication number: 20150079191
    Abstract: A cured non-polymeric gel including a plurality of non-polymeric cross-links. The non-polymeric cross-links result from curing an oil or oil composition at selected curing conditions to achieve a desired amount of cross-linking to form the non-polymeric get. The desired amount of cross-linking is selected based on a desired rate of degradation of the gel after the gel is implanted. The oil or oil composition comprises one or more of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or alphalinolenic acid (ALA).
    Type: Application
    Filed: October 10, 2014
    Publication date: March 19, 2015
    Applicant: ATRIUM MEDICAL CORPORATION
    Inventors: Roger LABRECQUE, Philip MCNAMARA, Joseph FERRARO, Lisa ROGERS, Paul MARTAKOS, Theodore KARWOSKI, Steve A. HERWECK, Keith M. FAUCHER, Thomas M. SWANICK
  • Patent number: 8962023
    Abstract: A method of UV curing and corresponding resulting non-polymeric cross-linked gel are provided. The cross-linked gel can be combined with a medical device structure. The cross-linked gel can provide anti-adhesion characteristics, in addition to improved healing and anti-inflammatory response. The cross-linked gel is generally formed of a naturally occurring oil, or an oil composition formed in part of a naturally occurring oil, that is at least partially cured forming a cross-linked gel derived from at least one fatty acid compound. In addition, the oil composition can include a therapeutic agent component, such as a drug or other bioactive agent. The curing method can vary the application of UV light in both intensity and duration to achieve a desired amount of cross-linking forming the gel.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: February 24, 2015
    Assignee: Atrium Medical Corporation
    Inventors: Roger Labrecque, Philip McNamara, Joseph Ferraro, Lisa Rogers, Paul Martakos, Theodore Karwoski, Steve A. Herweck, Keith Faucher, Thomas M. Swanick
  • Patent number: 8920483
    Abstract: A deployment device, system, and method for deploying a prosthesis. The deployment device includes a housing, a rod disposed within the housing and adapted to rotate relative to the housing, and one or more support members (e.g., bushings, bearings, etc.) rotatably supporting the rod within the housing. An elongate slit is disposed in and entirely through the housing and is positioned in a way that enables the prosthesis to pass therethrough from a loaded, rolled configuration on the rod. The deployment device is generally flexible, e.g., has a bending stiffness of at most about 0.87 N/mm (e.g., about 0.05 N/mm to about 0.87 N/mm). Furthermore, the deployment device enables a user to deploy (e.g., unroll) a prosthesis therefrom at a rate determined manually by the user and in a piece-by-piece fashion.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 30, 2014
    Assignee: Atrium Medical Corporation
    Inventors: Thomas M. Swanick, Joseph Bienkiewicz
  • Patent number: 8858978
    Abstract: A method of curing and corresponding resulting non-polymeric cross-linked gel are provided. The cross-linked gel can be combined with a medical device structure. The cross-linked gel can provide anti-adhesion characteristics, in addition to improved healing and anti-inflammatory response. The cross-linked gel is generally formed of a naturally occurring oil, or an oil composition formed in part of a naturally occurring oil, that is at least partially cured forming a cross-linked gel derived from at least one fatty acid compound. In addition, the oil composition can include a therapeutic agent component, such as a drug or other bioactive agent. The curing method can vary the application of heat in both temperature and duration to achieve a desired amount of cross-linking forming the gel.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: October 14, 2014
    Assignee: Atrium Medical Corporation
    Inventors: Roger Labrecque, Philip McNamara, Joseph Ferraro, Lisa Rogers, Paul Martakos, Theodore Karwoski, Steve A. Herweck, Keith M. Faucher, Thomas M. Swanick
  • Patent number: 8795703
    Abstract: A stand-alone film is derived at least in part from fatty acids. The stand-alone film can have anti-adhesive, anti-inflammatory, non-inflammatory, and wound healing properties, and can additionally include one or more therapeutic agents incorporated therein. Corresponding methods of making the stand-alone film include molding, casting, or otherwise applying a liquid or gel to a substrate, and curing or otherwise treating to form the stand-alone film. The resulting stand-alone film is bioabsorbable.
    Type: Grant
    Filed: September 28, 2005
    Date of Patent: August 5, 2014
    Assignee: Atrium Medical Corporation
    Inventors: Thomas M. Swanick, Joseph Ferraro, Paul Martakos, Lisa Rogers, Theodore Karwoski, Steve A. Herweck, Keith Faucher, Philip McNamara