Patents by Inventor Thomas M. Valeri

Thomas M. Valeri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9640710
    Abstract: An improved method for interconnecting thin film solar cells to form solar cell modules is provided, the method comprising using a flat metallic mesh formed from a thin metallic strip to provide a current collection grid over a thin film solar cell. The method is particularly useful for forming interconnections between thin film solar cells deposited on flexible substrates. The rectangular cross sectional shape of the mesh elements provides an increased area of electrical contact to the solar cell compared to the small tangential area provided by elements of circular cross section. Mesh elements can be made higher rather than wider to improve conductivity without proportionally increasing shading loss. Various coatings can be applied to the mesh to improve its performance, provide corrosion resistance, and improve its cosmetic appearance.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: May 2, 2017
    Assignee: NuvoSun, Inc.
    Inventors: David B. Pearce, Bruce D. Hachtmann, Liguang Gong, Thomas M. Valeri, Dennis R. Hollars
  • Patent number: 9530926
    Abstract: A method for forming photovoltaic cells comprises providing a first roll of a photovoltaic material and a second roll of an expanded metallic mesh. The photovoltaic material comprises a photoactive material adjacent to a flexible substrate, and the expanded metallic mesh comprises a plurality of openings. Next, an electrically insulating material is provided adjacent to an edge portion of the photovoltaic material. The photovoltaic material from the first roll can then be brought in proximity to the expanded mesh from the second roll to form a nascent photovoltaic cell. The electrically insulating material can be disposed between the expanded metallic mesh and the photovoltaic material. Next, the nascent photovoltaic cell is cut into individual sections to form a plurality of photovoltaic cells.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: December 27, 2016
    Assignee: Nuvosun, Inc.
    Inventors: Bruce D. Hachtmann, Christine Tsai, Thomas M. Valeri, Herb Delarosa
  • Publication number: 20160268963
    Abstract: Methods and systems for forming and packaging a roll of photovoltaic cells are provided. A string of photovoltaic cells is incrementally formed such that the photovoltaic cells in the string extend from a leading edge of the string, where incrementally forming the string comprises sequentially connecting successive photovoltaic cells, and where sequentially connecting successive photovoltaic cells comprises connecting each successive photovoltaic cell to a respective, previously-connected photovoltaic cell that is farthest from the leading edge. Bypass diodes are electrically connected to successive portions of the string as the string is being formed. The string is wound with the bypass diodes connected thereto into a roll by rotating the leading edge of the string about a take-up roller as the string is being formed. In response to the string reaching a second predetermined number of photovoltaic cells, the roll is completed and packaged.
    Type: Application
    Filed: November 11, 2014
    Publication date: September 15, 2016
    Inventors: Szu-Ting Tsai, Thomas M. Valeri
  • Publication number: 20140360563
    Abstract: An improved method for interconnecting thin film solar cells to form solar cell modules is provided, the method comprising using a flat metallic mesh formed from a thin metallic strip to provide a current collection grid over a thin film solar cell. The method is particularly useful for forming interconnections between thin film solar cells deposited on flexible substrates. The rectangular cross sectional shape of the mesh elements provides an increased area of electrical contact to the solar cell compared to the small tangential area provided by elements of circular cross section. Mesh elements can be made higher rather than wider to improve conductivity without proportionally increasing shading loss. Various coatings can be applied to the mesh to improve its performance, provide corrosion resistance, and improve its cosmetic appearance.
    Type: Application
    Filed: June 20, 2014
    Publication date: December 11, 2014
    Inventors: David B. Pearce, Bruce D. Hachtmann, Liguang Gong, Thomas M. Valeri, Dennis R. Hollars
  • Publication number: 20140352777
    Abstract: A method for forming photovoltaic cells comprises providing a first roll of a photovoltaic material and a second roll of an expanded metallic mesh. The photovoltaic material comprises a photoactive material adjacent to a flexible substrate, and the expanded metallic mesh comprises a plurality of openings. Next, an electrically insulating material is provided adjacent to an edge portion of the photovoltaic material. The photovoltaic material from the first roll can then be brought in proximity to the expanded mesh from the second roll to form a nascent photovoltaic cell. The electrically insulating material can be disposed between the expanded metallic mesh and the photovoltaic material. Next, the nascent photovoltaic cell is cut into individual sections to form a plurality of photovoltaic cells.
    Type: Application
    Filed: December 6, 2012
    Publication date: December 4, 2014
    Inventors: Bruce D. Hachtmann, Christine Tsai, Thomas M. Valeri, Herb Delarosa
  • Patent number: 8802479
    Abstract: An improved method for interconnecting thin film solar cells to form solar cell modules is provided, the method comprising using a flat metallic mesh formed from a thin metallic strip to provide a current collection grid over a thin film solar cell. The method is particularly useful for forming interconnections between thin film solar cells deposited on flexible substrates. The rectangular cross sectional shape of the mesh elements provides an increased area of electrical contact to the solar cell compared to the small tangential area provided by elements of circular cross section. Mesh elements can be made higher rather than wider to improve conductivity without proportionally increasing shading loss. Various coatings can be applied to the mesh to improve its performance, provide corrosion resistance, and improve its cosmetic appearance.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: August 12, 2014
    Assignee: NuvoSun, Inc.
    Inventors: David B. Pearce, Bruce D. Hachtmann, Liguang Gong, Thomas M. Valeri, Dennis R. Hollars
  • Publication number: 20110300661
    Abstract: An improved method for interconnecting thin film solar cells to form solar cell modules is provided, the method comprising using a flat metallic mesh formed from a thin metallic strip to provide a current collection grid over a thin film solar cell. The method is particularly useful for forming interconnections between thin film solar cells deposited on flexible substrates. The rectangular cross sectional shape of the mesh elements provides an increased area of electrical contact to the solar cell compared to the small tangential area provided by elements of circular cross section. Mesh elements can be made higher rather than wider to improve conductivity without proportionally increasing shading loss. Various coatings can be applied to the mesh to improve its performance, provide corrosion resistance, and improve its cosmetic appearance.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 8, 2011
    Applicant: NuvoSun, Inc.
    Inventors: David B. Pearce, Bruce D. Hachtmann, Liguang Gong, Thomas M. Valeri, Dennis R. Hollars
  • Patent number: 7027246
    Abstract: Methods and apparatus are provided for creating servo-tracks on the R-side of single-sided hard memory disks. The method includes placing two single-sided disks in a concentric contact merge orientation with the R-side of each disk facing outwardly. Two independent servo-track writers then position an independent transducer proximate each R-side and write desired servo-track data to the R-side surface of each disk. The disks are de-merged and either disk may be placed in any single-sided disk drive.
    Type: Grant
    Filed: May 9, 2003
    Date of Patent: April 11, 2006
    Assignee: Maxtor Corporation
    Inventor: Thomas M. Valeri
  • Publication number: 20040013011
    Abstract: Methods and apparatus are provided for creating servo-tracks on the R-side of single-sided hard memory disks. The method includes placing two single-sided disks in a concentric contact merge orientation with the R-side of each disk facing outwardly. Two independent servo-track writers then position an independent transducer proximate each R-side and write desired servo-track data to the R-side surface of each disk. The disks are de-merged and either disk may be placed in any single-sided disk drive.
    Type: Application
    Filed: May 9, 2003
    Publication date: January 22, 2004
    Inventor: Thomas M. Valeri