Patents by Inventor Thomas Matthew Womble
Thomas Matthew Womble has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250099776Abstract: Illumination devices for directing light on tissue to induce one or more biological effects and more particularly phototherapeutic illumination devices with modular structures are disclosed. Modular structures are disclosed that provide the ability to have various changeable attributes for illumination devices based on intended treatment protocols. Modular structures may include tokens, switches, handles, rechargeable power structures, control modules, illumination modules, optics, light guides, and/or light guide positioners, among others.Type: ApplicationFiled: September 22, 2023Publication date: March 27, 2025Inventors: Thomas Matthew Womble, Sameer Tendulkar, P. Joseph DeSena, JR., James Michael Lay, F. Neal Hunter
-
Publication number: 20240307704Abstract: Devices for impinging light on tissue to induce one or more biological effects and more particularly phototherapeutic illumination devices and light guide assemblies with emission-directing structures are disclosed. Emission-directing structures include arrangements of light guides and light guide positioners that may be provided with titled arrangements for directing light emissions toward target tissue. An exemplary light guide may define an optical axis therethrough, and an exemplary light guide positioner may include one or more features that are tilted with respect to the optical axis. Certain tilted features may relate to offset incisor tabs and/or angled biting surfaces that engage within the oral cavity for repeatedly orienting the optical axis in a target direction.Type: ApplicationFiled: March 15, 2023Publication date: September 19, 2024Inventors: David T. Emerson, P. Joseph DeSena, Jr., Steve Reich, Antony van de Ven, James Michael Lay, Thomas Matthew Womble
-
Publication number: 20240293681Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.Type: ApplicationFiled: May 9, 2024Publication date: September 5, 2024Inventors: F. Neal Hunter, Antony Paul van de Ven, Nathan Stasko, David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Adam Cockrell, Rebecca McDonald
-
Patent number: 12011611Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.Type: GrantFiled: January 29, 2021Date of Patent: June 18, 2024Assignee: KNOW Bio, LLCInventors: F. Neal Hunter, Antony Paul van de Ven, Nathan Stasko, David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Adam Cockrell, Rebecca McDonald
-
Patent number: 11986666Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Biological effects may include upregulating and downregulating inflammatory immune response molecules within a target tissue. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths.Type: GrantFiled: February 11, 2021Date of Patent: May 21, 2024Assignee: KNOW Bio, LLCInventors: Adam Cockrell, Jacob Kocher, David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Rebecca McDonald
-
Publication number: 20240075312Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Biological effects may include upregulating and downregulating inflammatory immune response molecules within a target tissue. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths.Type: ApplicationFiled: November 14, 2023Publication date: March 7, 2024Inventors: Adam Cockrell, Jacob Kocher, David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Rebecca McDonald
-
Publication number: 20240024699Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.Type: ApplicationFiled: October 4, 2023Publication date: January 25, 2024Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald, James Michael Lay
-
Publication number: 20230302293Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an antiinflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.Type: ApplicationFiled: May 23, 2023Publication date: September 28, 2023Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald, James Michael Lay
-
Patent number: 11752359Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.Type: GrantFiled: August 24, 2021Date of Patent: September 12, 2023Assignee: KNOW Bio, LLCInventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald, James Michael Lay
-
Patent number: 11712578Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.Type: GrantFiled: August 24, 2021Date of Patent: August 1, 2023Assignee: KNOW Bio, LLCInventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald, James Michael Lay
-
Patent number: 11684798Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.Type: GrantFiled: August 24, 2021Date of Patent: June 27, 2023Assignee: KNOW Bio, LLCInventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald, James Michael Lay
-
Publication number: 20230059845Abstract: Methods of treating skin disorders are disclosed. The methods involve impinging light having a first peak wavelength on the tissue at a first radiant flux, wherein the first peak wavelength and the first radiant flux is selected to provide an anti-inflammatory effect, and impinging light having a second peak wavelength on the tissue at a second radiant flux, wherein the second peak wavelength and the second radiant flux are selected to either stimulate enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide or release nitric oxide from the endogenous stores are disclosed. Representative skin disorders include pruritus, psoriasis, acne, rosacea, and eczema, and the skin can include the scalp. The methods can reduce stinging and/or itching associated with the skin disorder. The anti-inflammatory wavelengths can be in the range of between about 650 and about 680 nm.Type: ApplicationFiled: January 16, 2021Publication date: February 23, 2023Inventors: Nathan Stasko, Nicholas William Medendorp, Jr., Thomas Matthew Womble
-
Publication number: 20220023660Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.Type: ApplicationFiled: August 24, 2021Publication date: January 27, 2022Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald
-
Publication number: 20210379400Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.Type: ApplicationFiled: August 24, 2021Publication date: December 9, 2021Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald
-
Patent number: 11147984Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.Type: GrantFiled: December 10, 2020Date of Patent: October 19, 2021Assignee: KNOW Bio, LLCInventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald
-
Publication number: 20210290970Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.Type: ApplicationFiled: January 29, 2021Publication date: September 23, 2021Inventors: F. Neal Hunter, Antony Paul van de Ven, Nathan Stasko, David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Adam Cockrell, Rebecca McDonald
-
Publication number: 20210290975Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.Type: ApplicationFiled: January 29, 2021Publication date: September 23, 2021Inventors: F. Neal Hunter, Antony Paul van de Ven, Nathan Stasko, David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Adam Cockrell, Rebecca McDonald
-
Patent number: D952171Type: GrantFiled: April 27, 2021Date of Patent: May 17, 2022Assignee: KNOW Bio, LLCInventors: David T. Emerson, James Michael Lay, Michael John Bergmann, Thomas Matthew Womble
-
Patent number: D952876Type: GrantFiled: November 10, 2020Date of Patent: May 24, 2022Assignee: KNOW Bio, LLCInventors: David T. Emerson, James Michael Lay, Michael John Bergmann, Thomas Matthew Womble
-
Patent number: D987094Type: GrantFiled: April 5, 2022Date of Patent: May 23, 2023Assignee: KNOW Bio, LLCInventors: David T. Emerson, James Michael Lay, Michael John Bergmann, Thomas Matthew Womble