Patents by Inventor Thomas Matviya

Thomas Matviya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080064595
    Abstract: A system comprising an activated carbon bed in contact with carbon foam is described. In some embodiments, the system, which may be a fluid treatment system, may comprise an activated carbon bed and a carbon foam section covering at least a portion of a surface of the activated carbon bed. In other embodiments, a fluid treatment system may comprise two or more activated carbon beds which are at least partially separated by one or more carbon foam sections. Further embodiments of a fluid treatment system may comprise a vessel, where one or more walls of the vessel comprises carbon foam, and an activated carbon bed contained within the vessel. Still further, a fluid treatment system may comprise an activated carbon bed and a carbon foam section at least partially contained within said activated carbon bed.
    Type: Application
    Filed: May 11, 2007
    Publication date: March 13, 2008
    Applicant: TOUCHSTONE RESEARCH LABORATORY, LTD.
    Inventors: Isaac Post, Thomas Matviya
  • Publication number: 20070202034
    Abstract: Methods for the production of carbon foam from swelling coals that do not require the use of high process pressures, oxidized coal, devolatized coal, or high-strength, foam expansion confining molds are described. In some embodiments, a comminuted swelling bituminous coal is heated to a first elevated temperature sufficient to result in the coal particles softening and melting together to form a substantially homogeneous open cell plastic carbon material. The substantially homogeneous open cell plastic carbon material may then be heated to a second elevated temperature at a slow rate to form carbon foam. In some embodiments, the resulting carbon foam may be heated to a higher third elevated temperature. The resulting carbon foam may be subsequently heated to elevated temperatures as great as 3200° C. or more.
    Type: Application
    Filed: November 20, 2006
    Publication date: August 30, 2007
    Applicant: TOUCHSTONE RESEARCH LABORATORY, LTD.
    Inventor: Thomas Matviya
  • Publication number: 20070128102
    Abstract: The present invention includes methods for simultaneously producing, within a single container, two or more sections of high density carbon foam materials of defined shape. A method used to prepare high density carbon foam sections may involve heating a comminuted agglomerating bituminous coal bed, that is at least partially divided into two or more sections by the use of partitions within the coal bed, to an elevated temperature sufficient to result in the coal particles softening and melting together to form sections of a generally homogeneous, continuous, open cell carbon material. The sections of homogeneous open cell carbon material are then maintained at an elevated temperature for a period of time sufficient to substantially reduce or essentially eliminate the plastic properties of the bituminous coal. As desired, the resultant high density carbon foam sections may be cooled to essentially ambient temperatures or immediately or subsequently heated to elevated temperatures as great as about 3200° C.
    Type: Application
    Filed: January 3, 2007
    Publication date: June 7, 2007
    Applicant: TOUCHSTONE RESEARCH LABORATORY, LTD.
    Inventor: Thomas Matviya
  • Publication number: 20070045537
    Abstract: A microsystem manipulation apparatus and an associated kit is described that may be used to facilitate the assembly and testing of Microsystems and microsystem components. The microsystem manipulation apparatus may include a scanning electron microscope imaging system, a stage, and at least one manipulator having an associated tool. The microsystem manipulation apparatus may be partially or fully automated to provide for routine microsystem assembly, disasembly, and/or testing. The associated kit may include one or more manipulators and associated tools for retrofitting an existing scanning electron microscope to produce a microsystem manipulation apparatus.
    Type: Application
    Filed: June 16, 2006
    Publication date: March 1, 2007
    Applicant: TOUCHSTONE RESEARCH LABORATORY, LTD.
    Inventors: Brian Joseph, Elizabeth Kraftician, Thomas Matviya
  • Publication number: 20060222854
    Abstract: High density carbon foams and methods for producing the same are described. A method used to prepare high density carbon foam may involve heating a comminuted agglomerating bituminous coal to an elevated temperature sufficient to result in the coal particles softening and melting together to form a generally homogeneous, continuous, open cell carbon material. The homogeneous open cell carbon material is then maintained at an elevated temperature for a period of time sufficient to substantially reduce or essentially eliminate the plastic property of the bituminous coal. As desired, the resultant high density carbon foam may be cooled to essentially ambient temperatures or immediately or subsequently heated to elevated temperatures as great as about 3200° C., followed by cooling.
    Type: Application
    Filed: March 30, 2006
    Publication date: October 5, 2006
    Inventors: Thomas Matviya, Rick Lucas
  • Publication number: 20050223632
    Abstract: According to the present invention there is provided coal-based cellular or porous products, also referred to herein as “carbon foams”, having a density of preferably between about 0.1 g/cm3 and about 0.8 g/cm3 and most preferably between about 0.3 and about 0.4 g/cm3 that are produced by the controlled heating of coal particulate preferably up to ¼ inch in diameter in a “mold” and under a non-oxidizing atmosphere. The coal-based cellular or porous products of the present invention have ash contents typically greater than about 1%. More typically these coal-based cellular or porous products have ash contents greater than about 3%, with ash contents in the range of about 7% to 15% being most typical. The ash residue remaining after essentially complete combustion/oxidation of these coal-based cellular or porous products is predominately composed of oxides of aluminum and silicon. Additionally, the cellular coal-based products of the present invention have relatively low overall B.E.T. surface areas.
    Type: Application
    Filed: June 2, 2005
    Publication date: October 13, 2005
    Inventors: Thomas Matviya, Darren Rogers
  • Publication number: 20050204613
    Abstract: A method for increasing the yield of carbon foam is described. The method includes placing a foaming sheet over the top surface of the material to be foamed. In certain embodiments, the foaming sheet is placed over the top surface of particulate coal prior to and during the foaming process. In some embodiments the foaming sheet is a smooth, continuous sheet, such as aluminum foil or the like. The resulting carbon product includes an increased amount of usable carbon foam.
    Type: Application
    Filed: March 17, 2005
    Publication date: September 22, 2005
    Inventors: Rick Lucas, Thomas Matviya
  • Publication number: 20050196481
    Abstract: Self-heated tools for the production of composite parts are described. The tools include a tool body which, at least in part, includes carbon foam materials that are electrically conductive or permeable to the passage of fluids. These materials can be both electrically conductive and permeable to the passage of fluids. The electrically conductive or fluid permeable carbon foam materials are an intrinsic part of the construction of these tool bodies and are not add-on devices. Electricity may be used to heat the electrically conductive carbon foam material and transfer heat to the tool face. In other embodiments, heated fluid may be passed through and used to heat the fluid permeable carbon foam material and transfer heat to tool body. The electrically conductive or permeable carbon foam materials may define the tool face of the tool body. The tool bodies may comprise carbon foam, which is both electrically conductive and permeable.
    Type: Application
    Filed: March 4, 2005
    Publication date: September 8, 2005
    Inventors: Drew Spradling, Douglas Merriman, Thomas Matviya, Rick Lucas