Patents by Inventor Thomas McGhie

Thomas McGhie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9757099
    Abstract: A biopsy stylet and needle system is provided that is configured for navigation and spring-loaded deployment through at least one tortuous or otherwise confined length. The system includes a needle cannula through which a notched biopsy stylet is disposed. The notched biopsy stylet includes at least one outer diameter length that is about the same as, but preferably very slightly less than, the inner diameter of the needle cannula. The notched biopsy stylet also includes at least one outer diameter length that has a smaller diameter, the lengthwise position of which corresponds to the tortuous or otherwise confined length through which the system is to be operated. The smaller stylet diameter length is configured to prevent binding between the stylet and the needle cannula and/or between the needle cannula and an overlying access cannula or other access passage structure.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: September 12, 2017
    Assignee: COOK MEDICAL TECHNOLOGIES LLC
    Inventors: Thomas McGhie, Bryan Chisholm
  • Patent number: 9480494
    Abstract: A vascular procedure includes sliding a constriction crossing mechanism over a wire guide having a tip positioned at a proximal side of a constriction, and rotating a sheath of the mechanism about an axis relative another sheath of the mechanism. The method further includes helically engaging the sheaths, and guiding an intraluminal treatment device into or past the constriction. The mechanism includes a first sheath and a second sheath, and a tip coupled with the first sheath. The mechanism further includes a helical coupling between the first and second sheaths, which is configured to convert a torque on one of the sheaths to an axial force on the other of the sheaths for crossing a vascular constriction with the tip. An anchoring mechanism coupled with one of the sheaths includes a deployed state resisting displacement of the second sheath within a vascular structure of a patient.
    Type: Grant
    Filed: November 25, 2013
    Date of Patent: November 1, 2016
    Assignee: Cook Medical Technologies LLC
    Inventor: Thomas McGhie
  • Patent number: 9375233
    Abstract: A vascular procedure includes sliding a constriction crossing mechanism over a wire guide having a tip positioned at a proximal side of a constriction, and rotating a sheath of the mechanism about an axis relative another sheath of the mechanism. The method further includes helically engaging the sheaths, and guiding an intraluminal treatment device into or past the vascular constriction. The mechanism includes a first sheath and a second sheath, and a tip coupled with the first sheath. The mechanism further includes a helical coupling between the first and second sheaths, which is configured to convert a torque on one of the sheaths to an axial force on the other of the sheaths for crossing a vascular constriction with the tip. An anchoring mechanism coupled with one of the sheaths includes a deployed state resisting displacement of the second sheath within a vascular structure of a patient.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: June 28, 2016
    Assignee: Cook Medical Technologies LLC
    Inventor: Thomas McGhie
  • Publication number: 20140088626
    Abstract: A vascular procedure includes sliding a constriction crossing mechanism over a wire guide having a tip positioned at a proximal side of a constriction, and rotating a sheath of the mechanism about an axis relative another sheath of the mechanism. The method further includes helically engaging the sheaths, and guiding an intraluminal treatment device into or past the constriction. The mechanism includes a first sheath and a second sheath, and a tip coupled with the first sheath. The mechanism further includes a helical coupling between the first and second sheaths, which is configured to convert a torque on one of the sheaths to an axial force on the other of the sheaths for crossing a vascular constriction with the tip. An anchoring mechanism coupled with one of the sheaths includes a deployed state resisting displacement of the second sheath within a vascular structure of a patient.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 27, 2014
    Applicant: Cook Medical Technologies LLC
    Inventor: Thomas McGhie
  • Publication number: 20140058422
    Abstract: A vascular procedure includes sliding a constriction crossing mechanism over a wire guide having a tip positioned at a proximal side of a constriction, and rotating a sheath of the mechanism about an axis relative another sheath of the mechanism. The method further includes helically engaging the sheaths, and guiding an intraluminal treatment device into or past the vascular constriction. The mechanism includes a first sheath and a second sheath, and a tip coupled with the first sheath. The mechanism further includes a helical coupling between the first and second sheaths, which is configured to convert a torque on one of the sheaths to an axial force on the other of the sheaths for crossing a vascular constriction with the tip. An anchoring mechanism coupled with one of the sheaths includes a deployed state resisting displacement of the second sheath within a vascular structure of a patient.
    Type: Application
    Filed: October 16, 2013
    Publication date: February 27, 2014
    Applicant: Cook Medical Technologies LLC
    Inventor: Thomas McGhie
  • Patent number: 8597314
    Abstract: A method of performing a percutaneous vascular procedure includes sliding a vascular constriction crossing mechanism in a proximal to distal direction over a wire guide having a wire guide tip positioned at a proximal side of a vascular constriction, and rotating a sheath of the vascular constriction crossing mechanism about an axis of rotation relative to another sheath of the vascular constriction crossing mechanism. The method further includes advancing a constriction crossing tip by way of helically engaging the sheaths during the steps of rotating, and guiding an intraluminal treatment device into or past the vascular constriction for performing a vascular procedure within the patient. The vascular constriction crossing mechanism includes a first sheath and a second sheath, and a constriction crossing tip coupled with a distal segment of the first sheath.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: December 3, 2013
    Assignee: Cook Medical Technologies LLC
    Inventor: Thomas McGhie
  • Publication number: 20130226030
    Abstract: A biopsy stylet and needle system is provided that is configured for navigation and spring-loaded deployment through at least one tortuous or otherwise confined length. The system includes a needle cannula through which a notched biopsy stylet is disposed. The notched biopsy stylet includes at least one outer diameter length that is about the same as, but preferably very slightly less than, the inner diameter of the needle cannula. The notched biopsy stylet also includes at least one outer diameter length that has a smaller diameter, the lengthwise position of which corresponds to the tortuous or otherwise confined length through which the system is to be operated. The smaller stylet diameter length is configured to prevent binding between the stylet and the needle cannula and/or between the needle cannula and an overlying access cannula or other access passage structure.
    Type: Application
    Filed: February 15, 2013
    Publication date: August 29, 2013
    Applicant: Cook Medical Technologies, Inc.
    Inventors: Thomas McGhie, Bryan Chisholm
  • Publication number: 20110160755
    Abstract: A method of performing a percutaneous vascular procedure includes sliding a vascular constriction crossing mechanism in a proximal to distal direction over a wire guide having a wire guide tip positioned at a proximal side of a vascular constriction, and rotating a sheath of the vascular constriction crossing mechanism about an axis of rotation relative to another sheath of the vascular constriction crossing mechanism. The method further includes advancing a constriction crossing tip by way of helically engaging the sheaths during the steps of rotating, and guiding an intraluminal treatment device into or past the vascular constriction for performing a vascular procedure within the patient. The vascular constriction crossing mechanism includes a first sheath and a second sheath, and a constriction crossing tip coupled with a distal segment of the first sheath.
    Type: Application
    Filed: December 29, 2009
    Publication date: June 30, 2011
    Applicant: COOK INCORPORATED
    Inventor: Thomas McGhie