Patents by Inventor Thomas Morf

Thomas Morf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10733523
    Abstract: A quantum computer hardware apparatus may include a first stage, which is connected to one or more signal generators, and a second stage adapted to be cooled down at a lower temperature than the first stage. Superconducting qubits are arranged in the second stage. The signal generators are configured, each, to generate radio frequency (RF) signals to drive the qubits, in operation. The apparatus may further include an intermediate stage between the first stage and the second stage, wherein the intermediate stage comprises one or more coolable filters, the latter configured for thermalizing RF signals from the signal generators. Related methods for thermalizing radio frequency signals in a quantum computer hardware apparatus are also disclosed.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: August 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Peter Mueller, Thomas Morf
  • Publication number: 20200184363
    Abstract: A quantum computer hardware apparatus may include a first stage, which is connected to one or more signal generators, and a second stage adapted to be cooled down at a lower temperature than the first stage. Superconducting qubits are arranged in the second stage. The signal generators are configured, each, to generate radio frequency (RF) signals to drive the qubits, in operation. The apparatus may further include an intermediate stage between the first stage and the second stage, wherein the intermediate stage comprises one or more coolable filters, the latter configured for thermalizing RF signals from the signal generators. Related methods for thermalizing radio frequency signals in a quantum computer hardware apparatus are also disclosed.
    Type: Application
    Filed: February 12, 2020
    Publication date: June 11, 2020
    Inventors: Peter Mueller, Thomas Morf
  • Publication number: 20200175412
    Abstract: A quantum computer hardware apparatus may include a first stage, which is connected to one or more signal generators, and a second stage adapted to be cooled down at a lower temperature than the first stage. Superconducting qubits are arranged in the second stage. The signal generators are configured, each, to generate radio frequency (RF) signals to drive the qubits, in operation. The apparatus may further include an intermediate stage between the first stage and the second stage, wherein the intermediate stage comprises one or more coolable filters, the latter configured for thermalizing RF signals from the signal generators. Related methods for thermalizing radio frequency signals in a quantum computer hardware apparatus are also disclosed.
    Type: Application
    Filed: November 18, 2019
    Publication date: June 4, 2020
    Inventors: Peter Mueller, Thomas Morf
  • Patent number: 10621503
    Abstract: A quantum computer hardware apparatus may include a first stage, which is connected to one or more signal generators, and a second stage adapted to be cooled down at a lower temperature than the first stage. Superconducting qubits are arranged in the second stage. The signal generators are configured, each, to generate radio frequency (RF) signals to drive the qubits, in operation. The apparatus may further include an intermediate stage between the first stage and the second stage, wherein the intermediate stage comprises one or more coolable filters, the latter configured for thermalizing RF signals from the signal generators. Related methods for thermalizing radio frequency signals in a quantum computer hardware apparatus are also disclosed.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: April 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Peter Mueller, Thomas Morf
  • Publication number: 20200034736
    Abstract: A quantum processing system may include one or more superconducting qubits and a qubit controller for controlling the one or more qubits. The qubit controller includes a radio frequency generation unit comprising electronic components, which are altogether configured to generate modulated RF signals. The controller also includes a phase locked loop unit maintaining a reference clock for two or more of the components of the RF generation unit, and a timing controller including an absolute timing register, the latter accessed by the reference clock, in operation. The qubit controller comprises a sequencer coupled to the timing controller to synchronize said two or more of said components by maintaining a coherent signal for said two or more of said components, the coherent signal phase matched to the one or more qubits, to drive and/or read out the one or more qubits via modulated signals generated by the synchronized components, in operation.
    Type: Application
    Filed: January 29, 2019
    Publication date: January 30, 2020
    Inventors: Peter Mueller, Thomas Morf
  • Publication number: 20190245345
    Abstract: Aspects of the invention provide for an electrostatic protection device for protecting an input port of an electronic circuit. The electrostatic protection device includes a stacked coil assembly with four ports. The electrostatic protection device further includes a human body model ESD protection circuit, a charge device model ESD protection circuit, and an impedance matching circuit. The human body model ESD protection circuit, the charge device model ESD protection circuit, and the impedance matching circuit are connected to separate ports selected from the four ports.
    Type: Application
    Filed: February 7, 2018
    Publication date: August 8, 2019
    Inventors: Pier Andrea Francese, Thomas Morf
  • Patent number: 9882258
    Abstract: An apparatus providing a direct chip to waveguide transition, comprising: one or more waveguides, a chip partially embedding each of the waveguides at a transition area positioned at a narrow side of each waveguide, and a transmitting element disposed at each of the transition areas, thereby providing one or more simultaneous, direct transitions between the chip and the waveguides.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: January 30, 2018
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Roi Carmon, Danny Elad, Noam Kaminski, Ofer Markish, Thomas Morf, Evgeny Shumaker
  • Patent number: 9759693
    Abstract: A novel and useful method of visualization by detection of EM radiation being irradiated or reflected from objects in the imager's field of view using Finite Element Method (FEM) simulation software tools. The methodology provides a verification method of antenna operation from an electrical point of view since bolometer performance cannot be estimated using regular antenna parameters such as directivity, gain, impedance matching, etc. as the bolometer does not behave as an antenna but rather behaves as an absorber. An incident wave is triggered on the absorber and the absorption of the bolometer structure is estimated using commercially available Finite Element Method (FEM) software (e.g., ANSYS® HFSS software, CST MICROWAVE STUDIO®, etc.). How much of the energy is reflected is subsequently measured. The energy which is not reflected is considered to be absorbed by the absorber.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: September 12, 2017
    Assignee: International Business Machines Corporation
    Inventors: Dan Corcos, Danny Elad, Noam Kaminski, Bernhard Klein, Lukas Kull, Thomas Morf
  • Publication number: 20170068475
    Abstract: Methods, computing systems and computer program products implement embodiments of the present invention that include detecting multiple sets of storage objects stored in a data facility including multiple server racks, each of the server racks including a plurality of server computers, each of the storage objects in each set being stored in a separate one of the server racks and including one or more data objects and one or more protection objects. A specified number of the storage objects are identified in a given server rack, each of the identified storage objects being stored in a separate one of the server computers, and one or more server computers in the given server rack not storing any of the identified storage objects are identified. Finally, in the identified one or more server computers, an additional protection object is created and managed for the identified storage objects.
    Type: Application
    Filed: November 17, 2016
    Publication date: March 9, 2017
    Inventors: Danny Harnik, MICHAEL FACTOR, DMITRY SOTNIKOV, PAULA TA-SHMA, Lukas Kull, Thomas Morf
  • Patent number: 9564671
    Abstract: An apparatus providing a direct chip to waveguide transition, comprising: one or more waveguides, a chip partially embedding each of the waveguides at a transition area positioned at a narrow side of each waveguide, and a transmitting element disposed at each of the transition areas, thereby providing one or more simultaneous, direct transitions between the chip and the waveguides.
    Type: Grant
    Filed: December 28, 2014
    Date of Patent: February 7, 2017
    Assignee: International Business Machines Corporation
    Inventors: Roi Carmon, Danny Elad, Noam Kaminski, Ofer Markish, Thomas Morf, Evgeny Shumaker
  • Publication number: 20160190670
    Abstract: An apparatus providing a direct chip to waveguide transition, comprising: one or more waveguides, a chip partially embedding each of the waveguides at a transition area positioned at a narrow side of each waveguide, and a transmitting element disposed at each of the transition areas, thereby providing one or more simultaneous, direct transitions between the chip and the waveguides.
    Type: Application
    Filed: March 7, 2016
    Publication date: June 30, 2016
    Inventors: Roi Carmon, Danny Elad, Noam Kaminski, Ofer Markish, Thomas Morf, Evgeny Shumaker
  • Publication number: 20160190671
    Abstract: An apparatus providing a direct chip to waveguide transition, comprising: one or more waveguides, a chip partially embedding each of the waveguides at a transition area positioned at a narrow side of each waveguide, and a transmitting element disposed at each of the transition areas, thereby providing one or more simultaneous, direct transitions between the chip and the waveguides.
    Type: Application
    Filed: December 28, 2014
    Publication date: June 30, 2016
    Inventors: Roi Carmon, Danny Elad, Noam Kaminski, Ofer Markish, Thomas Morf, Evgeny Shumaker
  • Patent number: 9297704
    Abstract: A method and circuit for determining a working temperature of a device, the method comprising: providing a first signal to a device having a temperature-sensitive characteristic; performing a function on the first signal by the device; demodulating a second signal output by the device to obtain a third signal thus generating a signal having reduced 1/f noise component; and based upon the first signal and the second signal, determining a working temperature of the device.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: March 29, 2016
    Assignee: International Business Machines Corporation
    Inventors: Dan Corcos, Michel Despont, Danny Elad, Thomas Morf, Mehmet Soyuer
  • Patent number: 9219177
    Abstract: The photo detector (100, 300, 500, 600, 700, 900) comprises a photo transistor (102, 902). The photo transistor has a light sensitive region (112, 910) for controlling the transistor action of the photo transistor. The photo detector further comprises a dielectric layer (118). The dielectric layer is in contact with the photo transistor. The photo detector further comprises a grating pattern (114, 604, 914, 1010) in contact with the dielectric layer. The grating layer and the dielectric layer are adapted for focusing electromagnetic radiation in the light sensitive region.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: December 22, 2015
    Assignee: International Business Machines Corporation
    Inventors: Matthias Fertig, Nikolaj Moll, Thomas Morf, Thomas Pflueger
  • Patent number: 9217673
    Abstract: There is provided a high responsivity device for thermal sensing in a Terahertz (THz) radiation detector. A load impedance connected to an antenna heats up due to the incident THz radiation received by the antenna. The heat generated by the load impedance is sensed by a thermal sensor such as a transistor. To increase the responsivity of the sense device without increasing the thermal mass, the device is located underneath a straight portion of an antenna arm. The transistor runs substantially the entire length of the antenna arm alleviating the problem caused by placing large devices on the side of the antenna and the resulting large additional thermal mass that must be heated. This boosts the responsivity of the pixel while retaining an acceptable level of noise and demanding a dramatically smaller increase in the thermal time constant.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: December 22, 2015
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Dan Corcos, Danny Elad, Noam Kaminski, Bernhard Klein, Lukas Kull, Thomas Morf
  • Publication number: 20150204731
    Abstract: A method and circuit for determining a working temperature of a device, the method comprising: providing a first signal to a device having a temperature-sensitive characteristic; performing a function on the first signal by the device; demodulating a second signal output by the device to obtain a third signal thus generating a signal having reduced 1/f noise component; and based upon the first signal and the second signal, determining a working temperature of the device.
    Type: Application
    Filed: January 20, 2014
    Publication date: July 23, 2015
    Applicant: International Business Machines Corporation
    Inventors: Dan Corcos, Michel Despont, Danny Elad, Thomas Morf, Mehmet Soyuer
  • Patent number: 9052234
    Abstract: A novel and useful THz radiation detector comprising a suspended dipole antenna and a plurality of reflectors for achieving low thermal mass and high electrical performance. The reflectors used in the antenna do not physical contact the dipole element and are used to shape the radiation pattern in similar fashion as obtained by well-known Yagi-Uda reflectors. The dipole element is connected directly to a load resister for generating heat which is sensed by a sensing transistor. The lack of a mechanical connection to the dipole antenna element prevents any increase in the thermal capacitance of the antenna.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: June 9, 2015
    Assignee: International Business Machines Corporation
    Inventors: Dan Corcos, Danny Elad, Noam Kaminski, Bernhard Klein, Lukas Kull, Thomas Morf
  • Patent number: 8957379
    Abstract: A novel and useful THz radiation detector comprising a suspended wideband planar skirt antenna for achieving low thermal mass and high electrical performance. The antenna comprises only the perimeter or “skirt” of the antenna. The antenna has multiple loops where each loop comprises a conductor that covers the perimeter or skirt and includes multiple inner and outer arms. The total length of each loop has a length substantially one wavelength. One or more ports or load impedances are connected at the center of the antenna and shared by one or more loops. A thermal sensor detects the heat generated in the load resister and converts the heat energy to an electrical signal which is transmitted to read out circuitry via signal lines that run together with a holding arm. The holding arm functions as both a path for the read out signals as well as providing mechanical support for and effectively suspending the antenna.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: February 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Dan Corcos, Danny Elad, Noam Kaminski, Bernhard Klein, Lukas Kull, Thomas Morf
  • Patent number: 8912616
    Abstract: A photodiode device including a photosensitive diffusion junction within a single layer. The photodiode device further includes a resonant grating located within the single layer. The photosensitive diffusion junction is located within the resonant grating.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporaion
    Inventors: Matthias Fertig, Thomas Morf, Nkolaj Moll, Martin Kreissig, Karl-Heinz Brenner, Maximilian Auer
  • Patent number: 8872112
    Abstract: A THz radiation detector comprising a vertical antenna separated from a suspended platform by an isolating thermal air gap for concentrating THz radiation energy into a smaller suspended MEMS platform upon which a thermal sensor element is located. THz photon energy is converted into electrical energy via a thermally isolated air gap between plates of a coupling capacitor that couples energy from the antenna to the thermal sensor. The capacitor plates used for capacitive coupling of the received signal realize an electro-static actuator whereby the application of a DC bias varies the coupling capacitor gap. The DC bias causes the actuator to pull the suspended platform close to the antenna to reduce the capacitive gap, increasing the coupling capacitance, to touch the antenna array thus quickly discharging the heat induced in the sensor platform or to perform advanced readout operations, such as amplitude modulation and correlated double sampling.
    Type: Grant
    Filed: October 2, 2011
    Date of Patent: October 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Dan Corcos, Michel Despont, Danny Elad, Lukas Kull, Thomas Morf, Benny Sheinman