Patents by Inventor Thomas N. Anderson

Thomas N. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10259711
    Abstract: Systems and methods are provided for separating oxygen from air using a sorption/desorption cycle that includes a reduced or minimized difference between the maximum and minimum pressures involved in the sorption/desorption cycle. The reduced or minimized difference in pressures can be achieved in part by using valves that can allow for commercial scale flow rates while avoiding large pressure drops for flows passing through the valves. A rotary wheel adsorbent is an example of a system that can allow for a sorption/desorption cycle with reduced and/or minimized pressure drops across valves associated with the process. Stationary adsorbent beds can also be used in combination with commercially available valves that have reduced and/or minimized pressure drops.
    Type: Grant
    Filed: March 22, 2017
    Date of Patent: April 16, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ramesh Gupta, Robert A. Johnson, Thomas N. Anderson, Harry W. Deckman, Peter I. Ravikovitch
  • Publication number: 20170305744
    Abstract: Systems and methods are provided for separating oxygen from air using a sorption/desorption cycle that includes a reduced or minimized difference between the maximum and minimum pressures involved in the sorption/desorption cycle. The reduced or minimized difference in pressures can be achieved in part by using valves that can allow for commercial scale flow rates while avoiding large pressure drops for flows passing through the valves. A rotary wheel adsorbent is an example of a system that can allow for a sorption/desorption cycle with reduced and/or minimized pressure drops across valves associated with the process. Stationary adsorbent beds can also be used in combination with commercially available valves that have reduced and/or minimized pressure drops.
    Type: Application
    Filed: March 22, 2017
    Publication date: October 26, 2017
    Inventors: Ramesh Gupta, Robert A. Johnson, Thomas N. Anderson, Harry W. Deckman, Peter I. Ravikovitch
  • Patent number: 9352269
    Abstract: Provided are apparatus and systems having a rotary valve assembly integrated with a reciprocating valve assembly to perform swing adsorption processes. The rotary valve assembly is utilized with the reciprocating valve assembly to manage the flow of streams through the system in an enhanced manner.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: May 31, 2016
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Robert F. Tammera, Thomas N. Anderson
  • Patent number: 9168485
    Abstract: A swing adsorption process for removing contaminants from a gaseous feed stream through a combination of a selective adsorbent material containing an effective amount of a non-adsorbent filler, adsorbent contactor design, and adsorption cycle design.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: October 27, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Harry W. Deckman, Robert A. Johnson, Robert F. Tammera, Thomas N. Anderson
  • Patent number: 9034079
    Abstract: A pressure swing adsorption process for removal of CO2 from natural gas streams through a combination of a selective adsorbent material containing an effective amount of a non-adsorbent filler, adsorbent contactor design, and adsorption cycle design. The removal of contaminants from gas streams, preferably natural gas streams, using rapid-cycle swing adsorption processes, such as rapid-cycle pressure swing adsorption (RC-PSA). Separations at high pressure with high product recovery and/or high product purity are provided through a combination of judicious choices of adsorbent material, gas-solid contactor, system configuration, and cycle designs. For example, cycle designs that include steps of purge and staged blow-down as well as the inclusion of a mesopore filler in the adsorbent material significantly improves product (e.g., methane) recovery. An RC-PSA product with less than 10 ppm H2S can be produced from a natural gas feed stream that contains less than 1 mole percent H2S.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: May 19, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Harry W. Deckman, Robert A. Johnson, Bruce T. Kelley, Peter I. Ravikovitch, Thomas N. Anderson
  • Publication number: 20140216254
    Abstract: Provided are apparatus and systems having a rotary valve assembly integrated with a reciprocating valve assembly to perform swing adsorption processes. The rotary valve assembly is utilized with the reciprocating valve assembly to manage the flow of streams through the system in an enhanced manner.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 7, 2014
    Inventors: Robert F. Tammera, Thomas N. Anderson
  • Patent number: 8784534
    Abstract: A pressure-temperature swing adsorption process for the removal of a target species, such as an acid gas, from a gas mixture, such as a natural gas stream. Herein, a novel multi-step temperature swing/pressure swing adsorption is utilized to operate while maintaining very high purity levels of contaminant removal from a product stream. The present process is particularly effective and beneficial in removing contaminants such as CO2 and/or H2S from a natural gas at high adsorption pressures (e.g., at least 500 psig) to create product streams of very high purity (i.e., very low contaminant levels).
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: July 22, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Preeti Kamakoti, Daniel P. Leta, Harry W. Deckman, Peter I. Ravikovitch, Thomas N. Anderson
  • Patent number: 8784535
    Abstract: The present invention relates to a pressure-temperature swing adsorption process wherein gaseous components that have been adsorbed can be recovered from the adsorbent bed at elevated pressures. In particular, the present invention relates to a pressure-temperature swing adsorption process for the separation of C2+ hydrocarbons (hydrocarbons with at least 2 carbon atoms) from natural gas streams to obtain a high purity methane product stream. In more preferred embodiments of the present processes, the processes may be used to obtain multiple, high purity hydrocarbon product streams from natural gas stream feeds resulting in a chromatographic-like fractionation with recovery of high purity individual gaseous component streams.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: July 22, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Peter I. Ravikovitch, Robert A. Johnson, Harry W. Deckman, Thomas N. Anderson
  • Patent number: 8784533
    Abstract: A temperature swing adsorption process for the removal of a target species, such as an acid gas, from a gas mixture, such as a natural gas stream. Herein, a novel multi-step temperature swing/pressure swing adsorption is utilized to operate while maintaining very high purity levels of contaminant removal from a product stream. The present process is particularly effective and beneficial in removing contaminants such as CO2 and/or H2S from a natural gas at relatively high adsorption pressures (e.g., at least 500 psig) to create product streams of very high purity (i.e., very low contaminant levels).
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: July 22, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Daniel P. Leta, Preeti Kamakoti, Harry W. Deckman, Peter I. Ravikovitch, Thomas N. Anderson
  • Publication number: 20140033919
    Abstract: A pressure swing adsorption process for removal of C02 from natural gas streams through a combination of a selective adsorbent material containing an effective amount of a non-adsorbent filler, adsorbent contactor design, and adsorption cycle design. The removal of contaminants from gas streams, preferably natural gas streams, using rapid-cycle swing adsorption processes, such as rapid-cycle pressure swing adsorption (RC-PSA). Separations at high pressure with high product recovery and/or high product purity are provided through a combination of judicious choices of adsorbent material, gas-solid contactor, system configuration, and cycle designs. For example, cycle designs that include steps of purge and staged blow-down as well as the inclusion of a mesopore filler in the adsorbent material significantly improves product (e.g., methane) recovery. An RC-PSA product with less than 10 ppm H2S can be produced from a natural gas feed stream that contains less than 1 mole percent H2S.
    Type: Application
    Filed: February 27, 2012
    Publication date: February 6, 2014
    Inventors: Harry W. Deckman, Robert A. Johnson, Bruce T. Kelley, Peter I. Ravikovitch, Thomas N. Anderson
  • Publication number: 20130327216
    Abstract: A swing adsorption process for removing contaminants from a gaseous feed stream through a combination of a selective adsorbent material containing an effective amount of a non-adsorbent filler, adsorbent contactor design, and adsorption cycle design.
    Type: Application
    Filed: February 27, 2012
    Publication date: December 12, 2013
    Applicant: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Harry W. Deckman, Robert A. Johnson, Robert F. Tammera, Thomas N. Anderson
  • Publication number: 20120312163
    Abstract: A temperature swing adsorption process for the removal of a target species, such as an acid gas, from a gas mixture, such as a natural gas stream. Herein, a novel multi-step temperature swing/pressure swing adsorption is utilized to operate while maintaining very high purity levels of contaminant removal from a product stream. The present process is particularly effective and beneficial in removing contaminants such as CO2 and/or H2S from a natural gas at relatively high adsorption pressures (e.g., at least 500 psig) to create product streams of very high purity (i.e., very low contaminant levels).
    Type: Application
    Filed: February 27, 2012
    Publication date: December 13, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Daniel P. Leta, Preeti Kamakoti, Harry W. Deckman, Peter I. Ravikovitch, Thomas N. Anderson
  • Publication number: 20120222552
    Abstract: The present invention relates to a pressure-temperature swing adsorption process wherein gaseous components that have been adsorbed can be recovered from the adsorbent bed at elevated pressures. In particular, the present invention relates to a pressure-temperature swing adsorption process for the separation of C2+ hydrocarbons (hydrocarbons with at least 2 carbon atoms) from natural gas streams to obtain a high purity methane product stream. In more preferred embodiments of the present processes, the processes may be used to obtain multiple, high purity hydrocarbon product streams from natural gas stream feeds resulting in a chromatographic-like fractionation with recovery of high purity individual gaseous component streams.
    Type: Application
    Filed: February 27, 2012
    Publication date: September 6, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Peter I. Ravikovitch, Robert A. Johnson, Harry W. Deckman, Thomas N. Anderson
  • Publication number: 20120222553
    Abstract: A pressure-temperature swing adsorption process for the removal of a target species, such as an acid gas, from a gas mixture, such as a natural gas stream. Herein, a novel multi-step temperature swing/pressure swing adsorption is utilized to operate while maintaining very high purity levels of contaminant removal from a product stream. The present process is particularly effective and beneficial in removing contaminants such as CO2 and/or H2S from a natural gas at high adsorption pressures (e.g., at least 500 psig) to create product streams of very high purity (i.e., very low contaminant levels).
    Type: Application
    Filed: February 27, 2012
    Publication date: September 6, 2012
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Preeti Kamakoti, Daniel P. Leta, Harry W. Deckman, Peter I. Ravikovitch, Thomas N. Anderson
  • Patent number: 7280268
    Abstract: Optical parametric oscillators (OPO) and systems are provided. The OPO has a non-linear optical material located between two optical elements where the product of the reflection coefficients of the optical elements are higher at the output wavelength than at either the pump or idler wavelength. The OPO output may be amplified using an additional optical parametric amplifier (OPA) stage.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: October 9, 2007
    Assignee: Purdue Research Foundation
    Inventors: Robert P. Lucht, Waruna D. Kulatilaka, Thomas N. Anderson, Thomas L. Bougher
  • Patent number: 7110818
    Abstract: Systems and methods for providing a medical device parameter profile to a programmer that is remote from where the parameter profile was created is described. The system includes a first programmer creating a parameter profile for a specific classification. The classes are defined by therapy or patient status. A communication system for communicating the parameter profile to at least one additional programmer that is remote from the first programmer.
    Type: Grant
    Filed: November 4, 2001
    Date of Patent: September 19, 2006
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Thomas N. Anderson, Vickie L. Conley, David A. Miller, Mark Schwartz, C. Denise Thompson
  • Patent number: 6982426
    Abstract: A nitric oxide sensor and method is disclosed. The sensor is based on sum-frequency mixing of a tunable, 395-nm external cavity diode laser with a 532-nm diode-pumped intracavity-frequency-doubled Nd:YAG laser in a beta-barium-borate crystal. The output from the BBO crystal is ultraviolet radiation at 227 nm and is split using a 50—50 beam splitter. Half of the radiation is directed into a reference photomultiplier tube, and the other half of the UV radiation is directed through the medium of interest and then directed into a signal photomultiplier tube. The output from the photomultiplier tubes is compared and the difference utilized to indicate the level of nitric oxide by absorption-based spectrosocpic techniques.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: January 3, 2006
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Robert P. Lucht, Thomas N. Anderson, Sherif F. Hanna, Rodolfo Barron-Jimenez, Thomas Walther, Sukesh Roy, Michael S. Brown, James R. Gord, Jerald A. Caton
  • Patent number: 6842644
    Abstract: Systems and methods for providing a navigation and guidance sequence during configuration, input, and storage of programmable parameters for use in a medical device. One embodiment includes a cardiac rhythm management device as the medical device. The navigational sequence provides a series of interfaces on which parameter input fields are displayed. In one embodiment, the interfaces are graphical user interfaces. Each interface may include a plurality of different sets of parameter input fields with only one set being displayed at a time.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: January 11, 2005
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Thomas N. Anderson, John D. Higinbotham, David A. Miller, Mark Schwartz, C. Denise Thompson
  • Publication number: 20030088291
    Abstract: Systems and methods for providing a navigation and guidance sequence during configuration, input, and storage of programmable parameters for use in a medical device. One embodiment includes a cardiac rhythm management device as the medical device. The navigational sequence provides a series of interfaces on which parameter input fields are displayed. In one embodiment, the interfaces are graphical user interfaces. Each interface may include a plurality of different sets of parameter input fields with only one set being displayed at a time.
    Type: Application
    Filed: November 2, 2001
    Publication date: May 8, 2003
    Inventors: Thomas N. Anderson, John D. Higinbotham, David A. Miller, Mark Schwartz, C. Denise Thompson
  • Patent number: H2197
    Abstract: An all-solid-state continuous-wave (cw) laser system for measurements of the absorption by the CO molecule of mid-infrared radiation in the 4.3-4.6 ?m range is described, wherein a single-mode, tunable output of a 70 mW, 860-nm ECDL is difference frequency mixed with the output of a 550 mW diode-pumped cw Nd:YAG laser in a PPLN crystal to produce approximately 1 ?W of tunable cw radiation at 4.5 ?m.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: August 7, 2007
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: James R. Gord, Robert P. Lucht, Thomas N. Anderson, Rodolfo Barron-Jimenez, Thomas Walther, Sukesh Roy, Michael S. Brown, Jerald A. Caton