Patents by Inventor Thomas Neidhart

Thomas Neidhart has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210265468
    Abstract: A semiconductor device includes a semiconductor substrate having a first dopant and a second dopant. A covalent atomic radius of a material of the semiconductor substrate is i) larger than a covalent atomic radius of the first dopant and smaller than a covalent atomic radius of the second dopant, or ii) smaller than the covalent atomic radius of the first dopant and larger than the covalent atomic radius of the second dopant. The semiconductor device further includes a semiconductor layer on the semiconductor substrate and semiconductor device elements in the semiconductor layer. A vertical concentration profile of the first dopant decreases along at least 80% of a distance between an interface of the semiconductor substrate and the semiconductor layer to a surface of the semiconductor substrate opposite to the interface.
    Type: Application
    Filed: April 21, 2021
    Publication date: August 26, 2021
    Inventors: Ingo Muri, Johannes Konrad Baumgartl, Oliver Hellmund, Jacob Tillmann Ludwig, Iris Moder, Thomas Neidhart, Gerhard Schmidt, Hans-Joachim Schulze
  • Patent number: 10247671
    Abstract: A sensor and methods of making a sensor are disclosed. The sensor may include a substrate including an opening, an optical source disposed in the substrate and configured to generate an optical source signal, an optical detector disposed in the substrate so that the opening is disposed between the optical source and the optical detector, a plurality of optical cavity structures disposed in the opening wherein each of the plurality of optical cavity structures contains an enclosed cavity so that the respective enclosed cavities are not in gas communication with each other, wherein the plurality of optical cavity structures are arranged in an optical path between the optical source and the optical detector, and a processing circuit coupled to the optical detector and configured to process an optical signal received by the optical detector.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: April 2, 2019
    Assignee: Infineon Technologies AG
    Inventors: Jonathan Silvano de Sousa, Thomas Grille, Ursula Hedenig, Thomas Neidhart, Peter Irsigler, Vijaye Kumar Rajaraman
  • Publication number: 20180180542
    Abstract: A sensor and methods of making a sensor are disclosed. The sensor may include a substrate including an opening, an optical source disposed in the substrate and configured to generate an optical source signal, an optical detector disposed in the substrate so that the opening is disposed between the optical source and the optical detector, a plurality of optical cavity structures disposed in the opening wherein each of the plurality of optical cavity structures contains an enclosed cavity so that the respective enclosed cavities are not in gas communication with each other, wherein the plurality of optical cavity structures are arranged in an optical path between the optical source and the optical detector, and a processing circuit coupled to the optical detector and configured to process an optical signal received by the optical detector.
    Type: Application
    Filed: February 26, 2018
    Publication date: June 28, 2018
    Inventors: Jonathan Silvano de Sousa, Thomas Grille, Ursula Hedenig, Thomas Neidhart, Peter Irsigler, Vijaye Kumar Rajaraman
  • Patent number: 9917333
    Abstract: A lithium ion battery includes a first substrate having a first main surface, and a lid including an insulating material. The lid is attached to the first main surface of the first substrate, and a cavity is defined between the first substrate and the lid. The lithium ion battery further includes an electrical interconnection element in the lid, the electrical interconnection element providing an electrical connection between a first main surface and a second main surface of the lid. The lithium ion battery further includes an electrolyte in the cavity, an anode at the first substrate, the anode including a component made of a semiconductor material, and a cathode at the lid.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: March 13, 2018
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Vijaye Kumar Rajaraman, Kamil Karlovsky, Thomas Neidhart, Karl Mayer, Rainer Leuschner, Christine Moser, Ravi Keshav Joshi, Alexander Breymesser, Bernhard Goller, Francisco Javier Santos Rodriguez, Peter Zorn
  • Patent number: 9903816
    Abstract: A sensor and methods of making a sensor are disclosed. The sensor may include a substrate, an optical source, an optical detector, a plurality of optical cavities in the substrate or in a layer structure over the substrate, where the plurality of optical cavities may be arranged in an optical path between the optical source and the optical detector, and a processing circuit coupled to the optical detector and configured to receive a signal representing an optical signal received by the optical detector.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: February 27, 2018
    Assignee: Infineon Technologies AG
    Inventors: Jonathan Silvano de Sousa, Thomas Grille, Ursula Hedenig, Thomas Neidhart, Peter Irsigler, Vijaye Kumar Rajaraman
  • Patent number: 9698247
    Abstract: A semiconductor arrangement is produced by providing a semiconductor carrier of a second conduction type and epitaxially growing a first semiconductor zone of a first conduction type on the carrier. The first semiconductor zone includes a semiconductor base material doped with first and second dopants which are made of different substances which are both different from the semiconductor base material. The first dopant is electrically active and causes a doping of the first conduction type in the semiconductor base material, and causes a decrease or an increase of a lattice constant of the first semiconductor zone. The second dopant causes one or both of hardening of the first semiconductor zone and an increase of the lattice constant of the first semiconductor zone if the first dopant causes a decrease, or a decrease of the lattice constant of the first semiconductor zone if the first dopant causes an increase.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: July 4, 2017
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Manfred Kotek, Johannes Baumgartl, Markus Harfmann, Christian Krenn, Thomas Neidhart
  • Patent number: 9618693
    Abstract: A sensor system having a multi-pass interaction region is disclosed. The system includes an input region, a multi-pass region, and an output region. The input region is configured to receive emitted light. The multi-pass region is coupled to the input region and is configured to absorb portions of the emitted light according to a specimen proximate the multi-pass region. The output region is coupled to the multi-pass region and is configured to provide interacted light from the multi-pass region.
    Type: Grant
    Filed: June 13, 2014
    Date of Patent: April 11, 2017
    Assignee: Infineon Technologies AG
    Inventors: Ventsislav Lavchiev, Bernhard Jakoby, Ursula Hedenig, Thomas Grille, Peter Irsigler, Thomas Neidhart, Thomas Krotscheck Ostermann
  • Patent number: 9613804
    Abstract: One embodiment describes a method of manufacturing a semiconductor device. Here, impurities are implanted into a semiconductor body via a first side of the semiconductor body. Thereafter, a drift zone layer on the first side of the semiconductor body is formed. The following is an ablation of the semiconductor body from a second side of the semiconductor body and up to pn junction defined by impurities.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: April 4, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Peter Irsigler, Thomas Neidhart, Guenter Schagerl, Hans-Joachim Schulze
  • Patent number: 9412824
    Abstract: A semiconductor component includes a semiconductor body having a first side and a second side opposite the first side. In the semiconductor body, a dopant region is formed by a dopant composed of an oxygen complex. The dopant region extends over a section L having a length of at least 10 ?m along a direction from the first side to the second side. The dopant region has an oxygen concentration in a range of 1×1017 cm?3 to 5×1017 cm?3 over the section L.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: August 9, 2016
    Assignee: Infineon Technologies AG
    Inventors: Thomas Neidhart, Franz Josef Niedernostheide, Hans-Joachim Schulze, Werner Schustereder, Alexander Susiti
  • Publication number: 20160197164
    Abstract: A semiconductor arrangement is produced by providing a semiconductor carrier of a second conduction type and epitaxially growing a first semiconductor zone of a first conduction type on the carrier. The first semiconductor zone includes a semiconductor base material doped with first and second dopants which are made of different substances which are both different from the semiconductor base material. The first dopant is electrically active and causes a doping of the first conduction type in the semiconductor base material, and causes a decrease or an increase of a lattice constant of the first semiconductor zone. The second dopant causes one or both of hardening of the first semiconductor zone and an increase of the lattice constant of the first semiconductor zone if the first dopant causes a decrease, or a decrease of the lattice constant of the first semiconductor zone if the first dopant causes an increase.
    Type: Application
    Filed: March 16, 2016
    Publication date: July 7, 2016
    Inventors: Hans-Joachim Schulze, Manfred Kotek, Johannes Baumgartl, Markus Harfmann, Christian Krenn, Thomas Neidhart
  • Publication number: 20160153907
    Abstract: A sensor and methods of making a sensor are disclosed. The sensor may include a substrate, an optical source, an optical detector, a plurality of optical cavities in the substrate or in a layer structure over the substrate, where the plurality of optical cavities may be arranged in an optical path between the optical source and the optical detector, and a processing circuit coupled to the optical detector and configured to receive a signal representing an optical signal received by the optical detector.
    Type: Application
    Filed: December 2, 2014
    Publication date: June 2, 2016
    Inventors: Jonathan Silvano de Sousa, Thomas Grille, Ursula Hedenig, Thomas Neidhart, Peter Irsigler, Vijaye Kumar Rajaraman
  • Patent number: 9306010
    Abstract: A first semiconductor zone of a first conduction type is formed from a semiconductor base material doped with first and second dopants. The first and second dopants are different substances and also different from the semiconductor base material. The first dopant is electrically active and causes a doping of the first conduction type in the semiconductor base material, and causes either a decrease or an increase of a lattice constant of the pure, undoped first semiconductor zone. The second dopant may be electrically active, and may be of the same doping type as the first dopant, causes one or both of: a hardening of the first semiconductor zone; an increase of the lattice constant of the pure, undoped first semiconductor zone if the first dopant causes a decrease, and a decrease of the lattice constant of the pure, undoped first semiconductor zone if the first dopant causes an increase, respectively.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: April 5, 2016
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Manfred Kotek, Johannes Baumgartl, Markus Harfmann, Christian Krenn, Thomas Neidhart
  • Publication number: 20150362672
    Abstract: A sensor system having a multi-pass interaction region is disclosed. The system includes an input region, a multi-pass region, and an output region. The input region is configured to receive emitted light. The multi-pass region is coupled to the input region and is configured to absorb portions of the emitted light according to a specimen proximate the multi-pass region. The output region is coupled to the multi-pass region and is configured to provide interacted light from the multi-pass region.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 17, 2015
    Inventors: Ventsislav Lavchiev, Bernhard Jakoby, Ursula Hedenig, Thomas Grille, Peter Irsigler, Thomas Neidhart, Thomas Krotscheck Ostermann
  • Publication number: 20150294868
    Abstract: Chalcogen atoms are implanted into a single crystalline semiconductor substrate. At a density of interstitial oxygen of at least 5E16 cm?3 thermal donors containing oxygen are generated at crystal defects in the semiconductor substrate. Then the semiconductor substrate is heated up to a temperature above a deactivation temperature at which the thermal donors become inactive, wherein a portion of electrically active chalcogen atoms is increased.
    Type: Application
    Filed: April 15, 2014
    Publication date: October 15, 2015
    Inventors: Gerhard Schmidt, Josef Riss, Thomas Neidhart
  • Publication number: 20150280288
    Abstract: A lithium ion battery includes a first substrate having a first main surface, and a lid including an insulating material. The lid is attached to the first main surface of the first substrate, and a cavity is defined between the first substrate and the lid. The lithium ion battery further includes an electrical interconnection element in the lid, the electrical interconnection element providing an electrical connection between a first main surface and a second main surface of the lid. The lithium ion battery further includes an electrolyte in the cavity, an anode at the first substrate, the anode including a component made of a semiconductor material, and a cathode at the lid.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 1, 2015
    Inventors: Vijaye Kumar Rajaraman, Kamil Karlovsky, Thomas Neidhart, Karl Mayer, Rainer Leuschner, Christine Moser, Ravi Keshav Joshi, Alexander Breymesser, Bernhard Goller, Francisco Javier Santos Rodriguez, Peter Zorn
  • Publication number: 20150123247
    Abstract: A semiconductor component includes a semiconductor body having a first side and a second side opposite the first side. In the semiconductor body, a dopant region is formed by a dopant composed of an oxygen complex. The dopant region extends over a section L having a length of at least 10 ?m along a direction from the first side to the second side. The dopant region has an oxygen concentration in a range of 1×1017 cm?3 to 5×1017 cm?3 over the section L.
    Type: Application
    Filed: September 9, 2014
    Publication date: May 7, 2015
    Inventors: Thomas Neidhart, Franz Josef Niedernostheide, Hans-Joachim Schulze, Werner Schustereder, Alexander Susiti
  • Publication number: 20150076664
    Abstract: One embodiment describes a method of manufacturing a semiconductor device. Here, impurities are implanted into a semiconductor body via a first side of the semiconductor body. Thereafter, a drift zone layer on the first side of the semiconductor body is formed. The following is an ablation of the semiconductor body from a second side of the semiconductor body and up to pn junction defined by impurities.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 19, 2015
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Peter IRSIGLER, Thomas NEIDHART, Guenter SCHAGERL, Hans-Joachim SCHULZE
  • Patent number: 8895418
    Abstract: One embodiment describes a method of manufacturing a semiconductor device. Here, impurities are implanted into a semiconductor body via a first side of the semiconductor body. Thereafter, a drift zone layer on the first side of the semiconductor body is formed. The following is an ablation of the semiconductor body from a second side of the semiconductor body and up to pn junction defined by impurities.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: November 25, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Peter Irsigler, Thomas Neidhart, Guenter Schagerl, Hans-Joachim Schulze
  • Patent number: 8859409
    Abstract: A semiconductor component includes a semiconductor body having a first side and a second side opposite the first side. In the semiconductor body, a dopant region is formed by a dopant composed of an oxygen complex. The dopant region extends over a section L having a length of at least 10 ?m along a direction from the first side to the second side. The dopant region has an oxygen concentration in a range of 1×1017 cm?3 to 5×1017 cm?3 over the section L.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: October 14, 2014
    Assignee: Infineon Technologies AG
    Inventors: Thomas Neidhart, Franz Josef Niedernostheide, Hans-Joachim Schulze, Werner Schustereder, Alexander Susiti
  • Publication number: 20130249058
    Abstract: A semiconductor component includes a semiconductor body having a first side and a second side opposite the first side. In the semiconductor body, a dopant region is formed by a dopant composed of an oxygen complex. The dopant region extends over a section L having a length of at least 10 ?m along a direction from the first side to the second side. The dopant region has an oxygen concentration in a range of 1×1017 cm?3 to 5×1017 cm?3 over the section L.
    Type: Application
    Filed: September 13, 2012
    Publication date: September 26, 2013
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Thomas Neidhart, Franz Josef Niedernostheide, Hans-Joachim Schulze, Werner Schustereder, Alexander Susiti