Patents by Inventor Thomas Netter

Thomas Netter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11588063
    Abstract: A photovoltaic apparatus (1000) is provided including a front sheet (250) having a first portion (2501) and a second portion (2502). The photovoltaic apparatus further includes a back sheet (210) having a first portion (2101), a second portion (2102), and a first folded portion (2103), where the second portion of the front sheet is disposed between the second portion of the back sheet and the first folded portion of the back sheet. The photovoltaic apparatus further includes one or more photovoltaic devices (100) disposed between the first portion of the front sheet and the first portion of the back sheet, where each of the one or more photovoltaic devices includes an array of photovoltaic cells (105).
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: February 21, 2023
    Assignee: FLISOM AG
    Inventor: Thomas Netter
  • Patent number: 11277094
    Abstract: A photovoltaic apparatus is provided including a first portion having a first surface facing a first direction; a second portion located in a different position in the first direction from the first portion; and a third portion located in a different position in the first direction from the first portion; a front sheet and a back sheet each extending at least partially through each of the first portion, the second portion, and the third portion. The photovoltaic apparatus further includes a first rigid folded portion connecting the first portion to the second portion, the first rigid folded portion including portions of the front sheet and the back sheet; and a second rigid folded portion connecting the first portion to the third portion, the second rigid folded portion including portions of the front sheet and the back sheet.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: March 15, 2022
    Assignee: FLISOM AG
    Inventors: John Oldridge, Thomas Netter, Roland Kern
  • Patent number: 11218066
    Abstract: An apparatus for detecting a rotation angle, comprising: an annular stator around an axis of revolution Z, comprising: at least a first pole, a second pole, and a third pole arranged at constant azimuthal intervals around the axis of revolution of the annular stator, each of the poles comprising one or more electrical windings, and each of the poles comprising a flange that is a portion of a first surface of revolution around the annular stator's axis of revolution, the flange having an area distribution substantially that, within a coordinate system, of a sin(?) function from a low ? bound of about 0 radians to a high ? bound of about ? radians. The apparatus may comprise a rotor that comprises sectors having the azimuthal extent of one flange and having different magnetic permeabilities. Methods for forming the apparatus and for obtaining measurements are also presented.
    Type: Grant
    Filed: March 14, 2020
    Date of Patent: January 4, 2022
    Inventor: Thomas Netter
  • Publication number: 20210242356
    Abstract: A photo photovoltaic apparatus (1000) is provided including a front sheet (250) having a first portion (2501) and a second portion (2502). The photovoltaic apparatus further includes a back sheet (210) having a first portion (2101), a second portion (2102), and a first folded portion (2103) where the second portion of the front sheet is disposed between the second portion of the back sheet and the first folded portion of the back sheet. The photovoltaic apparatus further deludes one or more photovoltaic devices (100) disposed between the first portion of the front sheet and the first portion of the back sheet, where each of the one or more photovoltaic devices includes an array of photovoltaic ceils (105).
    Type: Application
    Filed: March 1, 2021
    Publication date: August 5, 2021
    Inventor: Thomas NETTER
  • Patent number: 10937916
    Abstract: A photovoltaic apparatus (1000) is provided including a front sheet (250) having a first portion (2501) and a second portion (2502). The photovoltaic apparatus further includes a back sheet (210) having a first portion (2101), a second portion (2102), and a first folded portion (2103), where the second portion of the front sheet is disposed between the second portion of the back sheet and the first folded portion of the back sheet. The photovoltaic apparatus further includes one or more photovoltaic devices (100) disposed between the first portion of the front sheet and the first portion of the back sheet, where each of the one or more photovoltaic devices includes an array of photovoltaic cells (105).
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: March 2, 2021
    Assignee: FLISOM AG
    Inventor: Thomas Netter
  • Publication number: 20200343396
    Abstract: A photovoltaic apparatus is provided including a back sheet and a photovoltaic device disposed over the back sheet. The photovoltaic device includes an array of photovoltaic cells extending in a first direction; and a plurality of serial interconnects having a length that extends in a second direction, wherein each serial interconnect is disposed between and electrically connects consecutive photovoltaic cells of the array. The photovoltaic apparatus further includes a front sheet disposed over the photovoltaic device, the front sheet having a plurality of structures, wherein each structure has one or more edges aligned with one of the serial interconnects.
    Type: Application
    Filed: July 10, 2020
    Publication date: October 29, 2020
    Inventors: Louis SCHAR, Thomas NETTER
  • Publication number: 20200295644
    Abstract: An apparatus for detecting a rotation angle, comprising: an annular stator around an axis of revolution Z, comprising: at least a first pole, a second pole, and a third pole arranged at constant azimuthal intervals around the axis of revolution of the annular stator, each of the poles comprising one or more electrical windings, and each of the poles comprising a flange that is a portion of a first surface of revolution around the annular stator's axis of revolution, the flange having an area distribution substantially that, within a coordinate system, of a sin(?) function from a low ? bound of about 0 radians to a high ? bound of about ? radians. The apparatus may comprise a rotor that comprises sectors having the azimuthal extent of one flange and having different magnetic permeabilities. Methods for forming the apparatus and for obtaining measurements are also presented.
    Type: Application
    Filed: March 14, 2020
    Publication date: September 17, 2020
    Inventor: Thomas Netter
  • Patent number: 10734538
    Abstract: A photovoltaic apparatus (200) is provided including a back sheet (210) and a photovoltaic device (100) disposed over the back sheet. The photovoltaic device includes an array of photovoltaic cells (101-104) extending in a first direction; and a plurality of serial interconnects (191) having a length that extends in a second direction, wherein each serial interconnect is disposed between and electrically connects consecutive photovoltaic cells of the array. The photovoltaic apparatus further includes a front sheet (250) disposed over the photovoltaic device, the front sheet having a plurality of structures (220), wherein each structure has one or more edges (221) aligned with one of the serial interconnects.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 4, 2020
    Assignee: FLISOM AG
    Inventors: Louis Schar, Thomas Netter
  • Publication number: 20200064194
    Abstract: A mobile device for measuring reflectance properties of a surface includes a first imaging device comprising an image sensor and a lens characterized by an optical axis; a first illumination source having an optical axis disposed at an angle of 45° with respect to the first imaging device lens' optical axis; a second imaging device comprising an image sensor and a lens characterized by an optical axis; and a second illumination source having an optical axis intersecting the first imaging device lens' optical axis where the first illumination source intersects the first imaging device lens' optical axis, the optical axes of the first imaging device and the second illumination source defining a second measurement plane. The mobile device further comprises a computer processor and a non-volatile memory comprising computer-readable instructions to acquire data from the first and second imaging devices and derive reflectance information of the surface of interest.
    Type: Application
    Filed: May 3, 2018
    Publication date: February 27, 2020
    Inventors: Christophe DAUGA, Thomas NETTER, James William VOGH, Peter EHBETS
  • Patent number: 10566479
    Abstract: A method for vias and monolithic interconnects in thin-film optoelectronic devices in which at least one line segment via hole is formed by laser drilling and passes through front-contact layers and semiconductive active layer, and in which laser drilling causes forming a CIGS-type wall of electrically conductive permanently metalized copper-rich CIGS-type alloy at the inner surface of the via hole, forming a conductive path between at least a portion of front-contact and a portion of back-contact layers, forming a bump-shaped raised portion at the surface of the front-contact layer, forming a raised portion of the back-contact layer, and optionally forming a raised portion of copper-rich CIGS-type alloy covering a portion of the front-contact layer. A thin-film CIGS device includes at least one line segment via hole obtainable by the method.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: February 18, 2020
    Assignee: FLISOM AG
    Inventors: Roger Ziltener, Thomas Netter
  • Publication number: 20190157482
    Abstract: A method for vias and monolithic interconnects in thin-film optoelectronic devices in which at least one line segment via hole is formed by laser drilling and passes through front-contact layers and semiconductive active layer, and in which laser drilling causes forming a CIGS-type wall of electrically conductive permanently metalized copper-rich CIGS-type alloy at the inner surface of the via hole, forming a conductive path between at least a portion of front-contact and a portion of back-contact layers, forming a bump-shaped raised portion at the surface of the front-contact layer, forming a raised portion of the back-contact layer, and optionally forming a raised portion of copper-rich CIGS-type alloy covering a portion of the front-contact layer. A thin-film CIGS device includes at least one line segment via hole obtainable by the method.
    Type: Application
    Filed: October 8, 2018
    Publication date: May 23, 2019
    Inventors: Roger ZILTENER, Thomas NETTER
  • Publication number: 20190148576
    Abstract: A photovoltaic apparatus (1000) is provided including a front sheet (250) having a first portion (2501) and a second portion (2502). The photovoltaic apparatus further includes a back sheet (210) having a first portion (2101), a second portion (2102), and a first folded portion (2103), where the second portion of the front sheet is disposed between the second portion of the back sheet and the first folded portion of the back sheet. The photovoltaic apparatus further includes one or more photovoltaic devices (100) disposed between the first portion of the front sheet and the first portion of the back sheet, where each of the one or more photovoltaic devices includes an array of photovoltaic cells (105).
    Type: Application
    Filed: May 3, 2017
    Publication date: May 16, 2019
    Inventor: Thomas NETTER
  • Publication number: 20190081592
    Abstract: A photovoltaic apparatus is provided including a first portion having a first surface facing a first direction; a second portion located in a different position in the first direction from the first portion; and a third portion located in a different position in the first direction from the first portion; a front sheet and a back sheet each extending at least partially through each of the first portion, the second portion, and the third portion. The photovoltaic apparatus further includes a first rigid folded portion connecting the first portion to the second portion, the first rigid folded portion including portions of the front sheet and the back sheet; and a second rigid folded portion connecting the first portion to the third portion, the second rigid folded portion including portions of the front sheet and the back sheet.
    Type: Application
    Filed: February 23, 2017
    Publication date: March 14, 2019
    Inventors: John OLDRIDGE, Thomas NETTER, Roland KERN
  • Patent number: 10211357
    Abstract: A thin-film optoelectronic module device (100) and design method comprising at least three monolithically-interconnected cells (104, 106, 108) where at least one monolithically-interconnecting line (250) depicts a spatial periodic or quasi-periodic wave and wherein the optoelectronic surface of said thin-film optoelectronic module device (100) presents at least one set of at least three zones (210, 220, 230) having curves of substantially parallel monolithic interconnect lines. Border zones (210, 230) have a lower front-contact sheet resistance than that of internal zone (220). Said curves of substantially parallel interconnecting lines may comprise peaks of triangular or rounded shape, additional spatial periods that are smaller than a baseline period, and mappings from one curve to the adjacent curve such as in the case of non-rectangular module devices (100).
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: February 19, 2019
    Assignee: FLISOM AG
    Inventors: Reto Pfeiffer, Roger Ziltener, Thomas Netter
  • Publication number: 20180358505
    Abstract: A photovoltaic apparatus (200) is provided including a back sheet (210) and a photovoltaic device (100) disposed over the back sheet. The photovoltaic device includes an array of photovoltaic cells (101-104) extending in a first direction; and a plurality of serial interconnects (191) having a length that extends in a second direction, wherein each serial interconnect is disposed between and electrically connects consecutive photovoltaic cells of the array. The photovoltaic apparatus further includes a front sheet (250) disposed over the photovoltaic device, the front sheet having a plurality of structures (220), wherein each structure has one or more edges (221) aligned with one of the serial interconnects.
    Type: Application
    Filed: December 13, 2016
    Publication date: December 13, 2018
    Inventors: Louis SCHAR, Thomas NETTER
  • Patent number: 10096731
    Abstract: A method for vias and monolithic interconnects in thin-film optoelectronic devices (100, 200) wherein at least one line segment via hole (163, 165, 165?, 167) is formed by laser drilling and passes through front-contact layers (150, 152, 154, 156, 158) and semiconductive active layer (130), and wherein laser drilling causes forming a CIGS-type wall (132, 134, 136, 138) of electrically conductive permanently metalized copper-rich CIGS-type alloy at the inner surface (135) of the via hole, thereby forming a conductive path between at least a portion of front-contact and a portion of back-contact layers (120, 124, 126, 128, 129), forming a bump-shaped raised portion (155) at the surface of the front-contact layer, forming a raised portion (125, 127, 127?) of the back-contact layer, and optionally forming a raised portion of copper-rich CIGS-type alloy (155?) covering a portion of the front-contact layer (150). A thin-film CIGS device comprises at least one line segment via hole obtainable by the method.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: October 9, 2018
    Assignee: FLISOM AG
    Inventors: Roger Ziltener, Thomas Netter
  • Publication number: 20180226527
    Abstract: A thin-film optoelectronic module device (100) and design method comprising at least three monolithically-interconnected cells (104, 106, 108) where at least one monolithically-interconnecting line (250) depicts a spatial periodic or quasi-periodic wave and wherein the optoelectronic surface of said thin-film optoelectronic module device (100) presents at least one set of at least three zones (210, 220, 230) having curves of substantially parallel monolithic interconnect lines. Border zones (210, 230) have a lower front-contact sheet resistance than that of internal zone (220). Said curves of substantially parallel interconnecting lines may comprise peaks of triangular or rounded shape, additional spatial periods that are smaller than a baseline period, and mappings from one curve to the adjacent curve such as in the case of non-rectangular module devices (100).
    Type: Application
    Filed: February 2, 2018
    Publication date: August 9, 2018
    Inventors: Reto PFEIFFER, Roger ZILTENER, Thomas NETTER
  • Patent number: 9911881
    Abstract: A thin-film optoelectronic module device (100) and design method comprising at least three monolithically-interconnected cells (104, 106, 108) where at least one monolithically-interconnecting line (250) depicts a spatial periodic or quasi-periodic wave and wherein the optoelectronic surface of said thin-film optoelectronic module device (100) presents at least one set of at least three zones (210, 220, 230) having curves of substantially parallel monolithic interconnect lines. Border zones (210, 230) have a lower front-contact sheet resistance than that of internal zone (220). Said curves of substantially parallel interconnecting lines may comprise peaks of triangular or rounded shape, additional spatial periods that are smaller than a baseline period, and mappings from one curve to the adjacent curve such as in the case of non-rectangular module devices (100).
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: March 6, 2018
    Assignee: FLISOM AG
    Inventors: Reto Pfeiffer, Roger Ziltener, Thomas Netter
  • Publication number: 20160359065
    Abstract: A method for vias and monolithic interconnects in thin-film optoelectronic devices (100, 200) wherein at least one line segment via hole (163, 165, 165?, 167) is formed by laser drilling and passes through front-contact layers (150, 152, 154, 156, 158) and semiconductive active layer (130), and wherein laser drilling causes forming a CIGS-type wall (132, 134, 136, 138) of electrically conductive permanently metalized copper-rich CIGS-type alloy at the inner surface (135) of the via hole, thereby forming a conductive path between at least a portion of front-contact and a portion of back-contact layers (120, 124, 126, 128, 129), forming a bump-shaped raised portion (155) at the surface of the front-contact layer, forming a raised portion (125, 127, 127?) of the back-contact layer, and optionally forming a raised portion of copper-rich CIGS-type alloy (155?) covering a portion of the front-contact layer (150). A thin-film CIGS device comprises at least one line segment via hole obtainable by the method.
    Type: Application
    Filed: January 26, 2015
    Publication date: December 8, 2016
    Inventors: Roger ZILTENER, Thomas NETTER
  • Publication number: 20150214409
    Abstract: A thin-film optoelectronic module device (100) and design method comprising at least three monolithically-interconnected cells (104, 106, 108) where at least one monolithically-interconnecting line (250) depicts a spatial periodic or quasi-periodic wave and wherein the optoelectronic surface of said thin-film optoelectronic module device (100) presents at least one set of at least three zones (210, 220, 230) having curves of substantially parallel monolithic interconnect lines. Border zones (210, 230) have a lower front-contact sheet resistivity than th at of internal zone (220). Said curves of substantially parallel interconnecting lines may comprise peaks of triangular or rounded shape, additional spatial periods that are smaller than a baseline period, and mappings from one curve to the adjacent curve such as in the case of non-rectangular module devices (100).
    Type: Application
    Filed: March 27, 2013
    Publication date: July 30, 2015
    Inventors: Reto Pfeiffer, Roger Ziltener, Thomas Netter