Patents by Inventor Thomas Niendorf

Thomas Niendorf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11691926
    Abstract: A method is provided for producing a microfiber-reinforced high-strength concrete, comprising a cement matrix with a microfiber addition. The fiber elements have a shape-memory alloy. The method has at least the following steps: training a fiber shape of the fiber elements at a temperature above a transition temperature, wherein the fiber shape allows the fiber elements to latch; cooling the trained fiber elements; plastically deforming the fiber elements from the trained fiber shape into an intermediate form by means of which the fiber elements are prevented from latching; introducing the fiber elements into the cement matrix in order to form a fresh concrete; and casting the fresh concrete and heating the fresh concrete to the transition temperature such that the fiber elements reform into the fiber shape, thereby latching the fiber elements. The invention additionally relates to a microfiber-reinforced concrete which is produced using such a method.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: July 4, 2023
    Assignee: Universitat Kassel
    Inventors: Thomas Niendorf, Philipp Krooss, Bernhard Middendorf, Alexander Wetzel, Werner Seim, Ekkehard Fehling, Hans-Peter Heim
  • Publication number: 20210155556
    Abstract: A method is provided for producing a microfiber-reinforced high-strength concrete, comprising a cement matrix with a microfiber addition. The fiber elements have a shape-memory alloy. The method has at least the following steps: training a fiber shape of the fiber elements at a temperature above a transition temperature, wherein the fiber shape allows the fiber elements to latch; cooling the trained fiber elements; plastically deforming the fiber elements from the trained fiber shape into an intermediate form by means of which the fiber elements are prevented from latching; introducing the fiber elements into the cement matrix in order to form a fresh concrete; and casting the fresh concrete and heating the fresh concrete to the transition temperature such that the fiber elements reform into the fiber shape, thereby latching the fiber elements. The invention additionally relates to a microfiber-reinforced concrete which is produced using such a method.
    Type: Application
    Filed: March 13, 2019
    Publication date: May 27, 2021
    Inventors: Thomas Niendorf, Philipp Krooss, Bernhard Middendorf, Alexander Wetzel, Werner Seim, Ekkehard Fehling, Hans-Peter Heim
  • Publication number: 20200063230
    Abstract: In a method for manufacturing a component containing an iron alloy material, a pulverulent pre-alloy is provided. The pre-alloy comprises, in wt. %, 0.01 to 1% C, 0.0.01 to 30% Mn, ?6% Al, and 0.05 to 6.0% Si, the remainder being Fe and usual contaminants. The pulverulent pre-alloy is mixed with at least one of elementary Ag powder, elementary Au powder, elementary Pd powder and elementary Pt powder so as to produce a powder mixture containing 0.1 to 20% of at least one of Ag, Au, Pd and Pt. The powder mixture is applied onto a carrier (16) by means of a powder application device (14). Electromagnetic or particle radiation is selectively irradiated onto the powder mixture applied onto the carrier (16) by means of an irradiation device (18) so as to generate a component from the powder mixture by an additive layer construction method.
    Type: Application
    Filed: November 4, 2019
    Publication date: February 27, 2020
    Inventors: Thomas Niendorf, Hans Juergen Maier, Florian Brenne, Mirko Schaper, Guido Grundmeier, Dieter Schwarze
  • Patent number: 10513748
    Abstract: In a method for manufacturing a component containing an iron alloy material, a pulverulent pre-alloy is provided. The pre-alloy comprises, in wt. %, 0.01 to 1% C, .0.01 to 30% Mn, ?6% Al, and 0.05 to 6.0% Si, the remainder being Fe and usual contaminants. The pulverulent pre-alloy is mixed with at least one of elementary Ag powder, elementary Au powder, elementary Pd powder and elementary Pt powder so as to produce a powder mixture containing 0.1 to 20% of at least one of Ag, Au, Pd and Pt. The powder mixture is applied onto a carrier (16) by means of a powder application device (14). Electromagnetic or particle radiation is selectively irradiated onto the powder mixture applied onto the carrier (16) by means of an Irradiation device (18) so as to generate a component from the powder mixture by an additive layer construction method.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: December 24, 2019
    Assignee: SLM Solutions Group AG
    Inventors: Thomas Niendorf, Hans Juergen Maier, Florian Brenne, Mirko Schaper, Guido Grundmeier, Dieter Schwarze
  • Patent number: 10093123
    Abstract: A method and an apparatus (10) for generating a three-dimensional work piece containing an information code are provided. The method comprises the steps of applying a raw material powder (18) onto a carrier (14) by means of a powder application device (16), irradiating electromagnetic or particle radiation (22) onto the raw material powder (18) applied onto the carrier (14) by means of an irradiation device (20), and controlling the operation of the powder application device (16) and the irradiation device (20) so as to generate an information code pattern (36) on or in the work piece (12), wherein the information code pattern (36) is defined by the microstructure (34) of the work piece (12).
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: October 9, 2018
    Assignee: SLM Solutions Group AG
    Inventors: Dieter Schwarze, Thomas Niendorf, Mirko Schaper, Florian Brenne, Wadim Reschetnik, Stefan Leuders, Andre Riemer
  • Publication number: 20160201155
    Abstract: In a method for manufacturing a component containing an iron alloy material, a pulverulent pre-alloy is provided. The pre-alloy comprises, in wt. %, 0.01 to 1% C, 0.0.01 to 30% Mn, ?6% Al, and 0.05 to 6.0% Si, the remainder being Fe and usual contaminants. The pulverulent pre-alloy is mixed with at least one of elementary Ag powder, elementary Au powder, elementary Pd powder and elementary Pt powder so as to produce a powder mixture containing 0.1 to 20% of at least one of Ag, Au, Pd and Pt. The powder mixture is applied onto a carrier (16) by means of a powder application device (14). Electromagnetic or particle radiation is selectively irradiated onto the powder mixture applied onto the carrier (16) by means of an irradiation device (18) so as to generate a component from the powder mixture by an additive layer construction method.
    Type: Application
    Filed: October 7, 2015
    Publication date: July 14, 2016
    Inventors: Thomas Niendorf, Hans Juergen Maier, Florian Brenne, Mirko Schaper, Guido Grundmeier, Dieter Schwarze
  • Publication number: 20150147585
    Abstract: A method and an apparatus (10) for generating a three-dimensional work piece containing an information code are provided. The method comprises the steps of applying a raw material powder (18) onto a carrier (14) by means of a powder application device (16), irradiating electromagnetic or particle radiation (22) onto the raw material powder (18) applied onto the carrier (14) by means of an irradiation device (20), and controlling the operation of the powder application device (16) and the irradiation device (20) so as to generate an information code pattern (36) on or in the work piece (12), wherein the information code pattern (36) is defined by the microstructure (34) of the work piece (12).
    Type: Application
    Filed: November 25, 2014
    Publication date: May 28, 2015
    Inventors: Dieter Schwarze, Thomas Niendorf, Mirko Schaper, Florian Brenne, Wadim Reschetnik, Stefan Leuders, Andre Riemer
  • Publication number: 20140158257
    Abstract: In a method for producing a motor vehicle component and a motor vehicle component produced according to the invention a steel sheet with a stacking fault energy between 10 and 40 mJ/m2 and a manganese content between 10 and 30% is provided, which is prone to twin formation at room temperature and has at least regions with a predominantly austenitic microstructure. Regions of this steel sheet are first temperature treated to a temperature between +30° C. and ?250° C. and subsequently cold formed.
    Type: Application
    Filed: November 29, 2013
    Publication date: June 12, 2014
    Applicant: Benteler Automobiltechnik GmbH
    Inventors: Andreas Frehn, Thomas Niendorf, Christian Rüsing, Hans Jürgen Maier