Patents by Inventor Thomas O'Shaughnessy

Thomas O'Shaughnessy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11655393
    Abstract: A mixed acrylate-siloxane polymer can be used to create three-dimensional (3D) structures of arbitrary shape via nanolithography. Treatment of such structures with amine (such as diamine) makes them permissive for neuronal cell adhesion and growth without need of additional modification such as poly-lysine (D or L) nor laminin.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: May 23, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: David A. Kidwell, Thomas O'Shaughnessy
  • Publication number: 20220389273
    Abstract: A mixed acrylate-siloxane polymer can be used to create three-dimensional (3D) structures of arbitrary shape via nanolithography. Treatment of such structures with amine (such as diamine) makes them permissive for neuronal cell adhesion and growth without need of additional modification such as poly-lysine (D or L) nor laminin.
    Type: Application
    Filed: August 15, 2022
    Publication date: December 8, 2022
    Inventors: David A. Kidwell, Thomas O'Shaughnessy
  • Patent number: 11459484
    Abstract: A mixed acrylate-siloxane polymer can be used to create three-dimensional (3D) structures of arbitrary shape via nanolithography. Treatment of such structures with amine (such as diamine) makes them permissive for neuronal cell adhesion and growth without need of additional modification such as poly-lysine (D or L) nor laminin.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: October 4, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: David A. Kidwell, Thomas O'Shaughnessy
  • Publication number: 20200347267
    Abstract: A mixed acrylate-siloxane polymer can be used to create three-dimensional (3D) structures of arbitrary shape via nanolithography. Treatment of such structures with amine (such as diamine) makes them permissive for neuronal cell adhesion and growth without need of additional modification such as poly-lysine (D or L) nor laminin.
    Type: Application
    Filed: April 28, 2020
    Publication date: November 5, 2020
    Inventors: David A. Kidwell, Thomas O'Shaughnessy
  • Patent number: 9488547
    Abstract: A modular system is designed to interface cell cultures to a shock tube (simulated blast) and/or drop tower (simulated blunt impact) for testing of helmet and helmet pad materials for mitigating cell injury. It includes a set of layers including helmet material, optionally helmet pad, simulated skin, simulated skull, and simulated bulk brain tissue.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: November 8, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Thomas O'Shaughnessy, Ryan McCulloch, Amit Bagchi, Kirth Simmonds, Clark Mitchell
  • Patent number: 9395265
    Abstract: A system for testing a helmet includes a simulated skull comprising a cranial cavity; a brain surrogate disposed inside the cranial cavity; and a cell pack comprising at least one culture well suitable for three-dimensional growth of live neurons therein, the cell pack comprising a retaining plate having at least one opening exposing a portion of a flexible membrane containing the at least one cell culture well, the exposed membrane portion being substantially flush with an exterior surface of the retaining plate, wherein the brain surrogate is configured to closely surround the cell pack inside the simulated skull. Also disclosed is a method of using the system.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: July 19, 2016
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Thomas O'Shaughnessy, Ryan McCulloch, Amit Bagchi, Kirth Simmonds
  • Publication number: 20160178476
    Abstract: A system for testing a helmet includes a simulated skull comprising a cranial cavity; a brain surrogate disposed inside the cranial cavity; and a cell pack comprising at least one culture well suitable for three-dimensional growth of live neurons therein, the cell pack comprising a retaining plate having at least one opening exposing a portion of a flexible membrane containing the at least one cell culture well, the exposed membrane portion being substantially flush with an exterior surface of the retaining plate, wherein the brain surrogate is configured to closely surround the cell pack inside the simulated skull. Also disclosed is a method of using the system.
    Type: Application
    Filed: December 19, 2014
    Publication date: June 23, 2016
    Applicant: THE GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE NAVY
    Inventors: Thomas O'Shaughnessy, Ryan McCulloch, Amit Bagchi, Kirth Simmonds
  • Publication number: 20160076967
    Abstract: A modular system is designed to interface cell cultures to a shock tube (simulated blast) and/or drop tower (simulated blunt impact) for testing of helmet and helmet pad materials for mitigating cell injury. It includes a set of layers including helmet material, optionally helmet pad, simulated skin, simulated skull, and simulated bulk brain tissue.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 17, 2016
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Thomas O'Shaughnessy, Ryan McCulloch, Amit Bagchi, Kirth Simmonds, Clark Mitchell
  • Publication number: 20140273062
    Abstract: Described herein is a sealed cell pack with a permeable membrane for growth and manipulation of three-dimensional cell cultures. This allows a cell culture to be removed from the laboratory and subjected to real world insults before being returned to culture conditions for continued growth and study. One application is for use in the study of the direct effects of blast waves on neuronal cells and methods for mitigating this response.
    Type: Application
    Filed: March 5, 2014
    Publication date: September 18, 2014
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Thomas O'Shaughnessy, Paul T. Charles, Kirth Simmonds, Amit Bagchi, Ryan Mcculloch
  • Patent number: 7947626
    Abstract: This invention comprises a method for generating functional neural networks using neural progenitor cells on microelectrode arrays (MEAs). The method involves dissociating neural progenitor cells from an embryo, propagating the neural progenitor cells, passaging the neural progenitor cells and seeding the neural progenitor cells on MEAs to produce a functional neural network. The neural progenitor cells may be continuously passaged to propagate an endless supply of neural progenitor cells. The resultant passaged progenitor cell derived neural network MEA may be used to detect and/or quantify various biological or chemical toxins.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: May 24, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Wu Ma, Jinny Lin Liu, Thomas O'Shaughnessy
  • Publication number: 20080058223
    Abstract: This invention comprises a method for generating functional neural networks using neural progenitor cells on microelectrode arrays (MEAs). The method involves dissociating neural progenitor cells from an embryo, propagating the neural progenitor cells, passaging the neural progenitor cells and seeding the neural progenitor cells on MEAs to produce a functional neural network. The neural progenitor cells may be continuously passaged to propagate an endless supply of neural progenitor cells. The resultant passaged progenitor cell derived neural network MEA may be used to detect and/or quantify various biological or chemical toxins.
    Type: Application
    Filed: August 29, 2007
    Publication date: March 6, 2008
    Applicant: The Government of the US, as represented by the Secretary of the Navy
    Inventors: Wu Ma, Jinny Liu, Thomas O'Shaughnessy