Patents by Inventor Thomas Oldham

Thomas Oldham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9085939
    Abstract: Casing bits include a bit crown having a substantially hollow interior. The bit crown has blades over a face portion thereof, the blades including a plurality of cutting elements attached thereto. The bit crown further includes a composite inlay positioned at least within the substantially hollow interior. The casing bits also include case hardened outer surfaces radially outside a drill-out region. The casing bits further include short-substrate cutting elements. Methods of forming a casing bit are also disclosed.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: July 21, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Eric E. McClain, Matthew R. Isbell, Jack Thomas Oldham, John C. Thomas, Marc W. Bird
  • Patent number: 8978788
    Abstract: A cutting element for use in a drill bit for drilling subterranean formations includes a cutting body having a substrate including a rear surface, an upper surface, and a peripheral side surface extending between the rear surface and the upper surface, and a superabrasive layer overlying the upper surface of the substrate. The cutting element further includes a sleeve surrounding the peripheral side surface of the cutting body and comprising a superabrasive layer bonded to an external surface of the sleeve.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: March 17, 2015
    Assignee: Baker Hughes Incorporated
    Inventors: Chaitanya K. Vempati, Suresh G. Patel, Jack Thomas Oldham, Danielle M. Fuselier, Jim Powers, Nicholas J. Lyons
  • Patent number: 8887839
    Abstract: A drill bit for drilling subterranean formations comprising a drill bit body including a group of primary cutting elements comprising a first primary cutting element and a second primary cutting element radially spaced apart from each other along a first radial axis. The drill bit body further including a group of backup cutting elements comprising a first backup cutting element in a secondary cutting position relative to the first primary cutting element and a second backup cutting element in secondary cutting positions relative to the second primary cutting element, wherein the first and second backup cutting elements are radially spaced apart from each other along a second radial axis different than the first radial axis and comprise a difference in cutting characteristic relative to each other of one of a backrake angle and a siderake angle.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: November 18, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Chaitanya K. Vempati, Jack Thomas Oldham, Edwin R Reek, Danielle M. Fuselier, Suresh G. Patel, Robert Laing
  • Publication number: 20110031031
    Abstract: A cutting element for use in a drill bit for drilling subterranean formations includes a cutting body having a substrate including a rear surface, an upper surface, and a peripheral side surface extending between the rear surface and the upper surface, and a superabrasive layer overlying the upper surface of the substrate. The cutting element further includes a sleeve surrounding the peripheral side surface of the cutting body and comprising a superabrasive layer bonded to an external surface of the sleeve.
    Type: Application
    Filed: July 8, 2010
    Publication date: February 10, 2011
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Chaitanya K. Vempati, Suresh G. Patel, Jack Thomas Oldham, Danielle M. Fuselier, Jim Powers, Nicholas J. Lyons
  • Publication number: 20100326742
    Abstract: A drill bit for drilling subterranean formations comprising a drill bit body including a group of primary cutting elements comprising a first primary cutting element and a second primary cutting element radially spaced apart from each other along a first radial axis. The drill bit body further including a group of backup cutting elements comprising a first backup cutting element in a secondary cutting position relative to the first primary cutting element and a second backup cutting element in secondary cutting positions relative to the second primary cutting element, wherein the first and second backup cutting elements are radially spaced apart from each other along a second radial axis different than the first radial axis and comprise a difference in cutting characteristic relative to each other of one of a backrake angle and a siderake angle.
    Type: Application
    Filed: June 17, 2010
    Publication date: December 30, 2010
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Chaitanya K. Vempati, Jack Thomas Oldham, Edwin E. Reek, Danielle M. Fuselier, Suresh G. Patel, Robert Laing
  • Publication number: 20090120693
    Abstract: Casing bits include a crown having a substantially hollow interior. The bit crown has blades over a face portion thereof, the blades including a plurality of cutting elements attached thereto. The bit crown further includes a composite inlay positioned at least within the substantially hollow interior. Casing bits also include case hardened outer surfaces radially outside the drill-out region. Casing bits further include short-substrate cutting elements. Methods of forming a casing bit are also disclosed.
    Type: Application
    Filed: November 14, 2008
    Publication date: May 14, 2009
    Inventors: Eric E. McClain, Matthew R. Isbell, Jack Thomas Oldham, John C. Thomas, Marc W. Bird
  • Publication number: 20080128951
    Abstract: An insert for a drill bit that includes diamond particles disposed in a matrix material, wherein the diamond particles have a contiguity of 15% or less is disclosed. A method of forming a diamond-impregnated cutting structure, that includes loading a plurality of substantially uniformly coated diamond particles into a mold cavity, pre-compacting the substantially uniformly coated diamond particles using a cold-press cycle, and heating the compacted, substantially uniformly coated diamond particles with a matrix material to form the diamond impregnated cutting structure is also disclosed.
    Type: Application
    Filed: January 28, 2008
    Publication date: June 5, 2008
    Applicant: SMITH INTERNATIONAL, INC.
    Inventors: Greg Lockwood, Thomas Oldham, Anthony Griffo, Madapusi Keshavan, David Conroy
  • Publication number: 20070284152
    Abstract: Thermally stable diamond constructions comprise a diamond body having a plurality of bonded diamond crystals and a plurality of interstitial regions disposed among the crystals. A metallic substrate is attached to the diamond body. A working surface is positioned along an outside portion of the diamond body, and the diamond body comprises a first region that is substantially free of a catalyst material, and a second region that includes the catalyst material. The diamond body first region extends from the working surface to depth of at least about 0.02 mm to a depth of less than about 0.09 mm. The diamond body includes diamond crystals having an average diamond grain size of greater than about 0.02 mm, and comprises at least 85 percent by volume diamond based on the total volume of the diamond body.
    Type: Application
    Filed: July 11, 2007
    Publication date: December 13, 2007
    Applicant: SMITH INTERNATIONAL, INC.
    Inventors: Ronald Eyre, Anthony Griffo, Thomas Oldham
  • Publication number: 20070240910
    Abstract: A new composition for forming a matrix body which includes spherical sintered tungsten carbide and an infiltration binder including one or more metals or alloys is disclosed. In some embodiments, the composition may include a Group VIIIB metal selected from one of Ni, Co, Fe, and alloys thereof. Moreover, the composition may also include cast tungsten carbide. In addition, the composition may also include carburized tungsten carbide.
    Type: Application
    Filed: June 18, 2007
    Publication date: October 18, 2007
    Applicant: SMITH INTERNATIONAL, INC.
    Inventors: Kumar Kembaiyan, Thomas Oldham
  • Publication number: 20070175669
    Abstract: A drill bit that includes a bit body formed from a matrix powder and at least one cutting element for engaging a formation, wherein the matrix powder included (a) stoichiometric tungsten carbide particles, (b) cemented tungsten carbide particles, and (c) cast tungsten carbide particles, and wherein after formation with the matrix powder, the bit has an erosion rate of less than 0.001 in/hr, a toughness of greater than 20 ksi(in0.5), and a transverse rupture strength of greater than 140 ksi is disclosed.
    Type: Application
    Filed: January 30, 2006
    Publication date: August 2, 2007
    Applicant: Smith International, Inc.
    Inventors: Dah-Ben Liang, Anthony Griffo, Thomas Oldham, Gregory Lockwood
  • Publication number: 20060266558
    Abstract: Thermally stable ultra-hard compact constructions of this invention comprise an ultra-hard material body that includes a thermally stable region positioned adjacent a surface of the body. The thermally stable region is formed from consolidated materials that are thermally stable at temperatures greater than about 750° C. The thermally stable region can occupy a partial portion of or the entire ultra-hard material body. The ultra-hard material body can comprise a composite of separate ultra-hard material elements that each form different regions of the body, at least one of the regions being thermally stable. The ultra-hard material body is attached to a desired substrate, an intermediate material is interposed between the body and the substrate, and the intermediate material joins the substrate and body together by high pressure/high temperature process.
    Type: Application
    Filed: May 26, 2005
    Publication date: November 30, 2006
    Applicant: SMITH INTERNATIONAL, INC.
    Inventors: Stewart Middlemiss, J. Belnap, Nephi Mourik, Thomas Oldham, Anthony Griffo
  • Publication number: 20060201718
    Abstract: Drill bit reinforcing members or blanks of this invention are formed from high-strength steels having a carbon content less than about 0.3 percent by weight, a yield strength of at least 55,000 psi, a tensile strength of at least 80,000 psi, a toughness of at least 40 CVN-L, Ft-lb, and a rate of expansion percentage change less than about 0.0025%/° F. during austenitic to ferritic phase transformation. In one embodiment, such steel comprises in the range of from about 0.1 to 0.3 percent by weight carbon, 0.5 to 1.5 percent by weight manganese, up to about 0.8 percent by weight chromium, 0.05 to 4 percent by weight nickel, and 0.02 to 0.8 percent by weight molybdenum. In another example, such steel comprises in the range of from about 0.1 to 0.3 percent by weight carbon, 0.9 to 1.5 percent by weight manganese, 0.1 to 0.5 percent by weight silicon, and one or more microalloying element selected from the group consisting of vanadium, niobium, titanium, zirconium, aluminum and mixtures thereof.
    Type: Application
    Filed: May 16, 2006
    Publication date: September 14, 2006
    Applicant: Smith International, Inc.
    Inventors: Kumar Kembaiyan, Thomas Oldham, John Zhang
  • Publication number: 20060081402
    Abstract: An insert for a drill bit that includes diamond particles disposed in a matrix material, wherein the diamond particles have a contiguity of 15% or less is disclosed. A method of forming a diamond-impregnated cutting structure, that includes loading a plurality of substantially uniformly coated diamond particles into a mold cavity, pre-compacting the substantially uniformly coated diamond particles using a cold-press cycle, and heating the compacted, substantially uniformly coated diamond particles with a matrix material to form the diamond impregnated cutting structure is also disclosed.
    Type: Application
    Filed: October 18, 2004
    Publication date: April 20, 2006
    Inventors: Greg Lockwood, Thomas Oldham, Anthony Griffo, Madapusi Keshavan, David Conroy
  • Publication number: 20060060391
    Abstract: Thermally stable diamond constructions comprise a diamond body having a plurality of bonded diamond crystals and a plurality of interstitial regions disposed among the crystals. A metallic substrate is attached to the diamond body. A working surface is positioned along an outside portion of the diamond body, and the diamond body comprises a first region that is substantially free of a catalyst material, and a second region that includes the catalyst material. The diamond body first region extends from the working surface to depth of at least about 0.02 mm to a depth of less than about 0.09 mm. The diamond body includes diamond crystals having an average diamond grain size of greater than about 0.02 mm, and comprises at least 85 percent by volume diamond based on the total volume of the diamond body.
    Type: Application
    Filed: September 21, 2004
    Publication date: March 23, 2006
    Inventors: Ronald Eyre, Anthony Griffo, Thomas Oldham
  • Publication number: 20050230150
    Abstract: An insert for an impreg bit that includes coated diamond particles disposed in a matrix material, wherein the coated diamond particles include a boride, a nitride, and a carbide of a group IVA, VA, VI transition metal or silicon disposed on synthetic, natural, TSP diamonds, or combinations thereof is disclosed. A method of forming a diamond-impregnated insert, including coating a plurality of diamond particles with a coating formed from a boride, a nitride, and a carbide of a group IVA, VA, VI transition metal or silicon or mixtures thereof, and forming a diamond impregnated insert body is also disclosed.
    Type: Application
    Filed: August 26, 2004
    Publication date: October 20, 2005
    Applicant: Smith International, Inc.
    Inventors: Thomas Oldham, Timothy Beaton
  • Publication number: 20050230156
    Abstract: Thermally-stable polycrystalline diamond materials of this invention comprise a first phase including a plurality of bonded together diamond crystals, and a second phase including a reaction product formed between a binder/catalyst material and a material reactive with the binder/catalyst material. The reaction product is disposed within interstitial regions of the polycrystalline diamond material that exists between the bonded diamond crystals. The first and second phases are formed during a single high pressure/high temperature process condition. The reaction product has a coefficient of thermal expansion that is relatively closer to that of the bonded together diamond crystals than that of the binder/catalyst material, thereby providing an improved degree of thermal stability to the polycrystalline diamond material.
    Type: Application
    Filed: December 6, 2004
    Publication date: October 20, 2005
    Inventors: John Belnap, Stewart Middlemiss, Anthony Griffo, Thomas Oldham, Kumar Kembaiyan
  • Patent number: 5979571
    Abstract: A combination metal milling and earth drilling tool, for use in performing a single trip kickoff from a casing in a well bore. The combination milling and drilling tool has a first, relatively more durable cutting structure, such as tungsten carbide, and a second, relatively harder cutting structure, such as polycrystalline diamond. The more durable first cutting structure is better suited for milling metal casing, while the harder second cutting structure is better suited for drilling through a subterranean formation, especially a rock formation. The first cutting structure is positioned outwardly relative to the second cutting structure, so that the first cutting structure will mill through the metal casing while shielding the second cutting structure from contact with the casing. The first cutting structure can wear away while milling through the casing and upon initial contact with the rock formation, thereby exposing the second cutting structure to contact with the rock formation.
    Type: Grant
    Filed: September 23, 1997
    Date of Patent: November 9, 1999
    Assignee: Baker Hughes Incorporated
    Inventors: Danny Eugene Scott, Jack Thomas Oldham, Gerald D. Lynde, Greg Nazzal, Roy E. Swanson, Brad Randall, James W. Anderson