Patents by Inventor Thomas P. Benson

Thomas P. Benson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8134365
    Abstract: An in vitro method of determining an analyte concentration of a sample includes placing the sample into a low-field, bench-top time-domain nuclear magnetic resonance (TD-NMR) spectrometer. The NMR spectrometer is tuned to measure a selected type of atom. A magnetic field is applied to the sample using a fixed, permanent magnet. At least one 90 degree radio-frequency pulse is applied to the sample. The radio-frequency pulse is generally perpendicular to the magnetic field. The 90 degree radio-frequency pulse is removed from the sample so as to produce a decaying NMR signal. The decaying NMR signal is measured at a plurality of times while applying a plurality of 180 degree refocusing radio-frequency pulses to the sample. The analyte concentration is calculated from the plurality of measurements associated with the decaying NMR signal and a selected model.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: March 13, 2012
    Assignee: Bayer HealthCare LLC
    Inventors: Scott E. Carpenter, Thomas P. Benson
  • Publication number: 20110175614
    Abstract: An in vitro method of determining an analyte concentration of a sample includes placing the sample into a low-field, bench-top time-domain nuclear magnetic resonance (TD-NMR) spectrometer. The NMR spectrometer is tuned to measure a selected type of atom. A magnetic field is applied to the sample using a fixed, permanent magnet. At least one 90 degree radio-frequency pulse is applied to the sample. The radio-frequency pulse is generally perpendicular to the magnetic field. The 90 degree radio-frequency pulse is removed from the sample so as to produce a decaying NMR signal. The decaying NMR signal is measured at a plurality of times while applying a plurality of 180 degree refocusing radio-frequency pulses to the sample. The analyte concentration is calculated from the plurality of measurements associated with the decaying NMR signal and a selected model.
    Type: Application
    Filed: April 1, 2011
    Publication date: July 21, 2011
    Applicant: Bayer Healthcare LLC
    Inventors: Scott E. Carpenter, Thomas P. Benson
  • Patent number: 7940045
    Abstract: An in vitro method of determining an analyte concentration of a sample includes placing the sample into a low-field, bench-top time-domain nuclear magnetic resonance (TD-NMR) spectrometer. The NMR spectrometer is tuned to measure a selected type of atom. A magnetic field is applied to the sample using a fixed, permanent magnet. At least one 90 degree radio-frequency pulse is applied to the sample. The radio-frequency pulse is generally perpendicular to the magnetic field. The 90 degree radio-frequency pulse is removed from the sample so as to produce a decaying NMR signal. The decaying NMR signal is measured at a plurality of times while applying a plurality of 180 degree refocusing radio-frequency pulses to the sample. The analyte concentration is calculated from the plurality of measurements associated with the decaying NMR signal and a selected model.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: May 10, 2011
    Assignee: Bayer Healthcare LLC
    Inventors: Scott E. Carpenter, Thomas P. Benson
  • Publication number: 20090219022
    Abstract: An in vitro method of determining an analyte concentration of a sample includes placing the sample into a low-field, bench-top time-domain nuclear magnetic resonance (TD-NMR) spectrometer. The NMR spectrometer is tuned to measure a selected type of atom. A magnetic field is applied to the sample using a fixed, permanent magnet. At least one 90 degree radio-frequency pulse is applied to the sample. The radio-frequency pulse is generally perpendicular to the magnetic field. The 90 degree radio-frequency pulse is removed from the sample so as to produce a decaying NMR signal. The decaying NMR signal is measured at a plurality of times while applying a plurality of 180 degree refocusing radio-frequency pulses to the sample. The analyte concentration is calculated from the plurality of measurements associated with the decaying NMR signal and a selected model.
    Type: Application
    Filed: May 13, 2009
    Publication date: September 3, 2009
    Applicant: Bayer Healthcare LLC
    Inventors: Scott E. Carpenter, Thomas P. Benson
  • Patent number: 7550971
    Abstract: An in vitro method of determining an analyte concentration of a sample includes placing the sample into a low-field, bench-top time-domain nuclear magnetic resonance (TD-NMR) spectrometer. The NMR spectrometer is tuned to measure a selected type of atom. A magnetic field is applied to the sample using a fixed, permanent magnet. At least one 90 degree radio-frequency pulse is applied to the sample. The radio-frequency pulse is generally perpendicular to the magnetic field. The 90 degree radio-frequency pulse is removed from the sample so as to produce a decaying NMR signal. The decaying NMR signal is measured at a plurality of times while applying a plurality of 180 degree refocusing radio-frequency pulses to the sample. The analyte concentration is calculated from the plurality of measurements associated with the decaying NMR signal and a selected model.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: June 23, 2009
    Assignee: Bayer HealthCare LLC
    Inventors: Scott E. Carpenter, Thomas P. Benson