Patents by Inventor Thomas P. Duffey

Thomas P. Duffey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10096967
    Abstract: Wafer positioning errors in stepper-scanners contribute to imaging defects. Changing the wavelength of the light source's generated light can compensate for wafer positional errors in the Z-direction. The wafer's real-time z-position is determined and a change in wavelength target to offset this error is communicated to the light source. The light source uses this change in wavelength target in a feed-forward operation and, in an embodiment, in combination with existing feedback operations, on a pulse-by-pulse basis for subsequent pulses in a current burst of pulses in addition to receiving the newly-specified laser wavelength target for a subsequent burst of laser pulses.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: October 9, 2018
    Assignee: Cymer, LLC
    Inventors: Rahul Ahlawat, Thomas P. Duffey
  • Publication number: 20180159297
    Abstract: Wafer positioning errors in stepper-scanners contribute to imaging defects. Changing the wavelength of the light source's generated light can compensate for wafer positional errors in the Z-direction. The wafer's real-time z-position is determined and a change in wavelength target to offset this error is communicated to the light source. The light source uses this change in wavelength target in a feed-forward operation and, in an embodiment, in combination with existing feedback operations, on a pulse-by-pulse basis for subsequent pulses in a current burst of pulses in addition to receiving the newly-specified laser wavelength target for a subsequent burst of laser pulses.
    Type: Application
    Filed: December 7, 2016
    Publication date: June 7, 2018
    Inventors: Rahul Ahlawat, Thomas P. Duffey
  • Patent number: 9599510
    Abstract: A method is described for estimating a spectral feature of a pulsed light beam produced by an optical source and directed toward a wafer of a lithography apparatus. The method includes receiving a set of N optical spectra of pulses of the light beam; saving the received N optical spectra to a saved set; transforming the optical spectra in the saved set to form a set of transformed optical spectra; averaging the transformed optical spectra to form an averaged spectrum; and estimating a spectral feature of the pulsed light beam based on the averaged spectrum.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: March 21, 2017
    Assignees: Cymer, LLC, ASML Netherlands B.V.
    Inventors: Thomas P. Duffey, Herman Philip Godfried
  • Publication number: 20160126689
    Abstract: Corrosion resistant electrodes are formed of brass that has been doped with phosphorus, arsenic, antimony, or combinations thereof. The electrodes are formed of brass that contains about 100 ppm to about 1,000 ppm of phosphorus, arsenic, or antimony, and the brass has no visible microporosity at a magnification of 400×. The brass may be cartridge brass that contains about 30 weight percent of zinc and the balance copper. Corrosion resistant electrodes also may be formed by subjecting brass to severe plastic deformation to increase the resistance of the brass to plasma corrosion. The corrosion resistant electrodes can be used in laser systems to generate laser light.
    Type: Application
    Filed: December 22, 2015
    Publication date: May 5, 2016
    Inventors: Janine Kardokus, Thomas P. Duffey
  • Patent number: 9246298
    Abstract: Corrosion resistant electrodes are formed of brass that has been doped with phosphorus. The electrodes are formed of brass that contains about 100 ppm to about 1,000 ppm of phosphorus, and the brass has no visible microporosity at a magnification of 400×. The brass may be cartridge brass that contains about 30 weight percent of zinc and the balance copper. Corrosion resistant electrodes also may be formed by subjecting brass to severe plastic deformation to increase the resistance of the brass to plasma corrosion. The corrosion resistant electrodes can be used in laser systems to generate laser light.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 26, 2016
    Assignee: Cymer, LLC
    Inventors: Janine Kardokus, Thomas P. Duffey, William N. Partlo
  • Publication number: 20150355025
    Abstract: A method is described for estimating a spectral feature of a pulsed light beam produced by an optical source and directed toward a wafer of a lithography apparatus. The method includes receiving a set of N optical spectra of pulses of the light beam; saving the received N optical spectra to a saved set; transforming the optical spectra in the saved set to form a set of transformed optical spectra; averaging the transformed optical spectra to form an averaged spectrum; and estimating a spectral feature of the pulsed light beam based on the averaged spectrum.
    Type: Application
    Filed: September 17, 2014
    Publication date: December 10, 2015
    Inventors: Thomas P. Duffey, Herman Philip Godfried
  • Publication number: 20130329763
    Abstract: Corrosion resistant electrodes are formed of brass that has been doped with phosphorus. The electrodes are formed of brass that contains about 100 ppm to about 1,000 ppm of phosphorus, and the brass has no visible microporosity at a magnification of 400×. The brass may be cartridge brass that contains about 30 weight percent of zinc and the balance copper. Corrosion resistant electrodes also may be formed by subjecting brass to severe plastic deformation to increase the resistance of the brass to plasma corrosion. The corrosion resistant electrodes can be used in laser systems to generate laser light.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 12, 2013
    Applicant: Cymer, Inc.
    Inventors: Janine Kardokus, Thomas P. Duffey, William N. Partlo
  • Patent number: 7995637
    Abstract: One aspect of the disclosed subject matter describes a gas discharge laser chamber. The gas discharge laser chamber includes a discharge region formed between a first electrode and a second electrode, a tangential fan for circulating gas through the discharge region, wherein the fan is proximate to an input side of the discharge region, an input side acoustic baffle proximate to the input side of the discharge region. The input side acoustic baffle includes a vanishing point leading edge, a vanishing point trailing edge, a gas flow smoothing offset surface aligning a gas flow from a surface of the input side acoustic baffle to an input side of a cathode support in the discharge region, a plurality of ridges separated by a plurality of trenches, wherein the plurality of ridges and the plurality of trenches are aligned with a direction of gas flow through the discharge region and wherein the plurality of ridges have a random pitch between about 0.3 and about 0.7 inch.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: August 9, 2011
    Assignee: Cymer, Inc.
    Inventors: Richard L. Sandstrom, William N. Partlo, Daniel J. W. Brown, Bryan G. Moosman, Tae H. Chung, Thomas P. Duffey, James J. Ferrell, Terance Hilsabeck
  • Publication number: 20100142582
    Abstract: One aspect of the disclosed subject matter describes a gas discharge laser chamber. The gas discharge laser chamber includes a discharge region formed between a first electrode and a second electrode, a tangential fan for circulating gas through the discharge region, wherein the fan is proximate to an input side of the discharge region, an input side acoustic baffle proximate to the input side of the discharge region. The input side acoustic baffle includes a vanishing point leading edge, a vanishing point trailing edge, a gas flow smoothing offset surface aligning a gas flow from a surface of the input side acoustic baffle to an input side of a cathode support in the discharge region, a plurality of ridges separated by a plurality of trenches, wherein the plurality of ridges and the plurality of trenches are aligned with a direction of gas flow through the discharge region and wherein the plurality of ridges have a random pitch between about 0.3 and about 0.7 inch.
    Type: Application
    Filed: October 21, 2009
    Publication date: June 10, 2010
    Inventors: Richard L. Sandstrom, William N. Partlo, Daniel J. W. Brown, Bryan G. Moosman, Tae H. Chung, Thomas P. Duffey, James J. Ferrell, Terance Hilsabeck
  • Patent number: 7535948
    Abstract: A fluorine gas discharge laser electrode for a gas discharge laser having a laser gas containing fluorine is disclosed which may comprise a copper and copper alloy cathode body having an upper curved region containing the discharge footprint for the cathode comprising copper and a lower portion comprising a copper alloy, with the facing portion of the electrode if formed in a arcuate shape extending into straight line portions on either side of the arcuate portion, the straight line portions terminating in vertical straight sides, with the boundary between the copper including at least the arcuate portion, the electrode may comprise a bonded element machined from two pieces of material the first made of copper and the second made of a copper alloy bonded together before machining.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: May 19, 2009
    Assignee: Cymer, Inc.
    Inventors: Thomas D. Steiger, Joshua C. Brown, Thomas P. Duffey, Walter D. Gillespie, Richard G. Morton
  • Patent number: 7301980
    Abstract: A gas discharge laser includes a laser chamber containing a halogen laser gas, two electrode elements defining a cathode and an anode, each having a discharge receiving region defining two longitudinal edges and having a region width defining a width of an electric discharge between the electrode elements in the laser gas. The anode comprising a first anode portion comprising a first anode material defining a first anode material erosion rate, located entirely within the discharge receiving region, a pair of second anode portions comprising a second anode material defining a second anode material erosion rate, respectively located on each side of the first anode portion and at least partially within the discharge receiving region; an electrode center base portion integral with the first anode portion; and wherein each of the respective pair of second anode portions is mechanically bonded to the center base portion.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: November 27, 2007
    Assignee: Cymer, Inc.
    Inventors: Thomas D. Steiger, Richard C. Ujazdowski, Timothy S. Dyer, Thomas P. Duffey, Walter D. Gillespie, Bryan G. Moosman, Richard G. Morton, Brian D. Strate
  • Patent number: 6757316
    Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: June 29, 2004
    Assignee: Cymer, Inc.
    Inventors: Peter C. Newman, Thomas P. Duffey, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Vladimir B. Fleurov, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Xiaojiang J. Pan, Vladimir Kulgeyko, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov
  • Publication number: 20040066827
    Abstract: A fluorine gas discharge laser electrode for a gas discharge laser having a laser gas containing fluorine is disclosed which may comprise a copper and copper alloy cathode body having an upper curved region containing the discharge footprint for the cathode comprising copper and a lower portion comprising a copper alloy, with the facing portion of the electrode if formed in a arcuate shape extending into straight line portions on either side of the arcuate portion, the straight line portions terminating in vertical straight sides, with the boundary between the copper including at least the arcuate portion, the electrode may comprise a bonded element machined from two pieces of material the first made of copper and the second made of a copper alloy bonded together before machining.
    Type: Application
    Filed: September 26, 2003
    Publication date: April 8, 2004
    Inventors: Thomas D. Steiger, Joshua C. Brown, Thomas P. Duffey, Walter D. Gillespie, Richard G. Morton, Timothy S. Dyer
  • Patent number: 6370174
    Abstract: A tunable injection seeded very narrow band F2 lithography laser. The laser combines modular design features of prior art long life releasable lithography lasers with special F2 line narrowing and tuning techniques applied to a seed beam operated in a first gain medium which beam is used to stimulate narrow band lasing in a second gain medium to produce a very narrow band laser beam useful for integrated circuit lithography.
    Type: Grant
    Filed: December 10, 1999
    Date of Patent: April 9, 2002
    Assignee: Cymer, Inc.
    Inventors: Eckehard D. Onkels, Palash P. Das, Thomas P. Duffey, Richard L. Sandstrom, Alexander I. Ershov, William N. Partlo
  • Publication number: 20020021728
    Abstract: The present invention provides an excimer laser capable of producing a high quality pulsed laser beam at pulse rates of about 4,000 Hz at pulse energies of about 5 mJ or greater. A preferred embodiment is an ArF excimer laser specifically designed as a light source for integrated circuit lithography. An improved wavemeter with special software monitors output beam parameters and controls a very fast PZT driven tuning mirror and the pulse power charging voltage to maintain wavelength and pulse energy within desired limits. In a preferred embodiment two fan motors drive a single tangential fan which provides sufficient gas flow to clear discharge debris from the discharge region during the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: May 11, 2001
    Publication date: February 21, 2002
    Inventors: Peter C. Newman, Thomas P. Duffey, William N. Partlo, Richard L. Sandstrom, Paul C. Melcher, David M. Johns, Robert B. Saethre, Vladimir B. Fleurov, Richard M. Ness, Curtis L. Rettig, Robert A. Shannon, Richard C. Ujazdowski, Shahryar Rokni, Xiaojiang J. Pan, Vladimir Kulgeyko, Scott T. Smith, Stuart L. Anderson, John M. Algots, Ronald L. Spangler, Igor V. Fomenkov
  • Patent number: 6330260
    Abstract: A reliable, modular, production quality F2 excimer laser capable of producing, at repetition rates in the range of 1,000 to 2,000 Hz or greater, laser pulses with pulse energies greater than 10 mJ with a full width half, maximum bandwidth of about 1 pm or less at wavelength in the range of 157 nm. Laser gas concentrations are disclosed for reducing unwasted infrared emissions from the laser. Also disclosed are UV energy detectors which are substantially insensitive to infrared light. Preferred embodiments of the present invention can be operated in the range of 1000 to 4000 Hz with pulse energies in the range of 10 to 5 mJ with power outputs in the range of 10 to 40 watts. Using this laser as an illumination source, stepper or scanner equipment can produce integrated circuit resolution of 0.1 &mgr;m or less. Replaceable modules include a laser chamber and a modular pulse power system.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: December 11, 2001
    Assignee: Cymer, Inc.
    Inventors: Eckehard D. Onkels, Richard L. Sandstrom, Thomas P. Duffey
  • Patent number: 6330261
    Abstract: The present invention provides a reliable modular production quality excimer laser capable of producing 10 mJ laser pulses in the range of 1000 Hz to 2000 Hz with a full width half, maximum bandwidth of about 0.6 pm or less. Replaceable modules include a laser chamber, a pulse power system comprised of three modules; an optical resonator comprised of a line narrowing module and an output coupler module; a wavemeter module, an electrical control module, a cooling water module and a gas control module. Important improvements have been provided in the pulse power unit to produce faster rise time and improved pulse energy control.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: December 11, 2001
    Assignee: Cymer, Inc.
    Inventors: Toshihiko Ishihara, Thomas P. Duffey, John T. Melchior, Herve A. Besaucele, Richard G. Morton, Richard M. Ness, Peter C. Newman, William N. Partlo, Daniel A. Rothweil, Richard L. Sandstrom
  • Patent number: 6240117
    Abstract: An excimer laser system with a real time fluorine monitor and an automatic fluorine control system to permit precise control of the fluorine concentration within the laser chamber. Cleaned laser gas is extracted from the laser chamber and directed through an F2 sample cell prior to returning to the chamber through one of the chamber window housings. A UV light beam is directed through the F2 sample cell and the amount of absorption of the light is measured. In preferred embodiments the absorption is measured by detecting with a photo detector the amount of light which passes through the cell. The photo detector provides a feedback signal which is used by a laser controller to automatically control fluorine concentration in the chamber to within desired ranges. In another preferred embodiment an acoustic detector detects acoustic signals resulting from absorbed light pulses. This invention provides a substantially real time measurement of fluorine concentration.
    Type: Grant
    Filed: November 12, 1998
    Date of Patent: May 29, 2001
    Assignee: Cymer, Inc.
    Inventors: Mengxiong Gong, Tom A. Watson, Palash P. Das, Richard L. Sandstrom, Thomas P. Duffey
  • Patent number: 6128323
    Abstract: The present invention provides a reliable modular production quality excimer laser capable of producing 10 mJ laser pulses at 2000 Hz with a full width half, maximum bandwidth of about 0.6 pm or less. Replaceable modules include a laser chamber; a pulse power system comprised of three modules; an optical resonator comprised of a line narrowing module and an output coupler module; a wavemeter module, an electrical control module, a cooling water module and a gas control module. Improvements in the laser chamber permitting the higher pulse rates and improved bandwidth performance include a single upstream preionizer tube and a high efficiency chamber. The chamber is designed for operation at lower fluorine concentration. Important improvements have been provided in the pulse power unit to produce faster rise time and improved pulse energy control.
    Type: Grant
    Filed: September 18, 1998
    Date of Patent: October 3, 2000
    Assignee: Cymer, Inc.
    Inventors: David W. Myers, Herve A. Besaucele, Palash P. Das, Thomas P. Duffey, Alexander I. Ershov, Igor V. Fomenkov, Thomas Hofmann, Richard G. Morton, Richard M. Ness, Peter C. Newman, Robert G. Ozarski, Gamaralalage G. Padmabandu, William N. Partlo, Daniel A. Rothweil, Richard L. Sandstrom, Paul S. Thompson, Richard C. Ujazdowski, Tom A. Watson, R. Kyle Webb, Paolo Zambon
  • Patent number: RE38054
    Abstract: The present invention provides a reliable modular production quality excimer laser capable of producing 10 mJ laser pulses in the range of 1000 Hz to 2000 Hz or greater. Replaceable modules include a laser chamber; a pulse power system comprised of three modules; an optical resonator comprised of a line narrowing module and an output coupler module; a wavemeter module, an electrical control module, a cooling water module and a gas control module. Important improvements have been provided in the pulse power unit to produce faster rise time and improved pulse energy control. These improvements include an increased capacity high voltage power supply with a voltage bleed-down circuit for precise voltage trimming, an improved communication module that generates a high voltage pulse from the capacitors charged by the high voltage power supply and amplifies the pulse voltage 23 times with a very fast voltage transformer having a secondary winding consisting of a single four-segment stainless steel rod.
    Type: Grant
    Filed: March 7, 2001
    Date of Patent: April 1, 2003
    Assignee: Cymer, Inc.
    Inventors: Thomas Hofmann, Jean-Marc Hueber, Palash P. Das, Toshihiko Ishihara, Thomas P. Duffey, John T. Melchior, Herve A. Besaucele, Richard G. Morton, Richard M. Ness, Peter C. Newman, William N. Partlo, Daniel A. Rothweil, Richard L. Sandstrom