Patents by Inventor Thomas Patrick Robinson

Thomas Patrick Robinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230381000
    Abstract: Stents are disclosed herein. In some embodiments stents within the scope of this disclosure may comprise a first flared end and second flared end. In some embodiments, a profile of each of the first flared end and the second flared end may circumscribe a portion of separate elliptical arcs. In some embodiments, the stents are formed from braided or woven wires having a constant pitch along a middle region and continuously varying pitches along the first flared end and the second flared end. Methods of manufacturing stents are disclosed herein. Methods of using stents are also disclosed herein.
    Type: Application
    Filed: June 1, 2023
    Publication date: November 30, 2023
    Inventors: Zeke Eller, Thomas Patrick Robinson, Bryan K. Elwood
  • Publication number: 20230381003
    Abstract: Prosthesis deployment devices are disclosed herein. In some embodiments, the prosthesis deployment device comprises an elongate delivery catheter assembly configured for electrosurgery and also configured to retain and deploy a prosthesis. Kits comprising the prosthesis deployment devices with a prosthesis loaded into a prosthesis pod of the device are disclosed herein as well as methods of using the prosthesis deployment devices.
    Type: Application
    Filed: April 17, 2023
    Publication date: November 30, 2023
    Inventors: Bryan K. Elwood, Thomas Patrick Robinson, Zeke Eller, John Twomey
  • Patent number: 11707370
    Abstract: Stents are disclosed herein. In some embodiments stents within the scope of this disclosure may comprise a first flared end and second flared end. In some embodiments, a profile of each of the first flared end and the second flared end may circumscribe a portion of separate elliptical arcs. In some embodiments, the stents are formed from braided or woven wires having a constant pitch along a middle region and continuously varying pitches along the first flared end and the second flared end. Methods of manufacturing stents are disclosed herein. Methods of using stents are also disclosed herein.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: July 25, 2023
    Assignee: Merit Medical Systems, Inc.
    Inventors: Zeke Eller, Thomas Patrick Robinson, Bryan K. Elwood
  • Patent number: 11628078
    Abstract: Prosthesis deployment devices are disclosed herein. In some embodiments, the prosthesis deployment device comprises an elongate delivery catheter assembly configured for electrosurgery and also configured to retain and deploy a prosthesis. Kits comprising the prosthesis deployment devices with a prosthesis loaded into a prosthesis pod of the device are disclosed herein as well as methods of using the prosthesis deployment devices.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: April 18, 2023
    Assignee: Merit Medical Systems, Inc.
    Inventors: Bryan K. Elwood, Thomas Patrick Robinson, Zeke Eller, John Twomey
  • Patent number: 11439738
    Abstract: An extracorporeal blood processing system comprises a plastic molded compact manifold that supports a plurality of molded blood and dialysate fluidic pathways along with a plurality of relevant sensors, valves and pumps. A disposable dialyzer is connected to the molded manifold to complete the blood circuit of the system. The compact manifold is also disposable in one embodiment and can be detachably installed in the dialysis machine.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: September 13, 2022
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Thomas Patrick Robinson, Charles E. Clemens, David Jacob Mishelevich, James Roswell Braig, Barry Neil Fulkerson, Daniele Ghidoli, Russell Thomas Joseph
  • Patent number: 11304837
    Abstract: Delivery systems and methods for deploying an implantable device are disclosed, which can include a delivery device having an outer tubular member and an inner assembly. The inner assembly is disposed within and is slidably movable relative to the outer tubular member. The inner assembly can include a pusher at a distal portion. The pusher abuts and restricts proximal movement, relative to the inner assembly, of a crimped implantable device within the outer tubular member. The pusher can include a slot to accommodate a suture binding mechanism of the implantable device. The delivery device can include a tip disposed at a distal end. The tip includes a tip transition zone. The inner sheath and outer tubular member can each have sections of distinct rigidity along their lengths with transition zones between the sections. A transition zone of the outer tubular member and a transition zone of the inner sheath can be longitudinally offset.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: April 19, 2022
    Assignee: Merit Medical Systems, Inc.
    Inventors: Zeke Eller, Thomas Patrick Robinson, Barton Gill, Darla Gill, Bryan K. Elwood
  • Publication number: 20200397971
    Abstract: An extracorporeal blood processing system comprises a plastic molded compact manifold that supports a plurality of molded blood and dialysate fluidic pathways along with a plurality of relevant sensors, valves and pumps. A disposable dialyzer is connected to the molded manifold to complete the blood circuit of the system. The compact manifold is also disposable in one embodiment and can be detachably installed in the dialysis machine.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 24, 2020
    Inventors: Thomas Patrick Robinson, Charles E. Clemens, David Jacob Mishelevich, James Roswell Braig, Barry Neil Fulkerson, Daniele Ghidoli, Russell Thomas Joseph
  • Publication number: 20200375768
    Abstract: Stents are disclosed herein. In some embodiments stents within the scope of this disclosure may comprise a first flared end and second flared end. In some embodiments, a profile of each of the first flared end and the second flared end may circumscribe a portion of separate elliptical arcs. In some embodiments, the stents are formed from braided or woven wires having a constant pitch along a middle region and continuously varying pitches along the first flared end and the second flared end. Methods of manufacturing stents are disclosed herein. Methods of using stents are also disclosed herein.
    Type: Application
    Filed: August 14, 2020
    Publication date: December 3, 2020
    Inventors: Zeke Eller, Thomas Patrick Robinson, Bryan K. Elwood
  • Patent number: 10758661
    Abstract: An extracorporeal blood processing system comprises a plastic molded compact manifold that supports a plurality of molded blood and dialysate fluidic pathways along with a plurality of relevant sensors, valves and pumps. A disposable dialyzer is connected to the molded manifold to complete the blood circuit of the system. The compact manifold is also disposable in one embodiment and can be detachably installed in the dialysis machine.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: September 1, 2020
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Thomas Patrick Robinson, Charles E. Clemens, David Jacob Mishelevich, James Roswell Braig, Barry Neil Fulkerson, Daniele Ghidoli, Russell Thomas Joseph
  • Patent number: 10744009
    Abstract: Transluminal stents are disclosed herein. In some embodiments stents within the scope of this disclosure may comprise a first flared end and second flared end. In some embodiments, a profile of each of the first flared end and the second flared end may circumscribe a portion of separate elliptical arcs. In some embodiments, the stents are formed from braided or woven wires having a constant pitch along a middle region and continuously varying pitches along the first flared end and the second flared end. Methods of manufacturing stents are disclosed herein. Methods of using stents are also disclosed herein.
    Type: Grant
    Filed: March 14, 2018
    Date of Patent: August 18, 2020
    Assignee: Merit Medical Systems, Inc.
    Inventors: Zeke Eller, Thomas Patrick Robinson, Bryan K. Elwood
  • Publication number: 20200146860
    Abstract: Delivery systems and methods for deploying an implantable device are disclosed, which can include a delivery device having an outer tubular member and an inner assembly. The inner assembly is disposed within and is slidably movable relative to the outer tubular member. The inner assembly can include a pusher at a distal portion. The pusher abuts and restricts proximal movement, relative to the inner assembly, of a crimped implantable device within the outer tubular member. The pusher can include a slot to accommodate a suture binding mechanism of the implantable device. The delivery device can include a tip disposed at a distal end. The tip includes a tip transition zone. The inner sheath and outer tubular member can each have sections of distinct rigidity along their lengths with transition zones between the sections. A transition zone of the outer tubular member and a transition zone of the inner sheath can be longitudinally offset.
    Type: Application
    Filed: November 11, 2019
    Publication date: May 14, 2020
    Inventors: Zeke Eller, Thomas Patrick Robinson, Barton Gill, Darla Gill, Bryan K. Elwood
  • Patent number: 10470906
    Abstract: Delivery systems and methods for deploying an implantable device are disclosed, which can include a delivery device having an outer tubular member and an inner assembly. The inner assembly is disposed within and is slidably movable relative to the outer tubular member. The inner assembly can include a pusher at a distal portion. The pusher abuts and restricts proximal movement, relative to the inner assembly, of a crimped implantable device within the outer tubular member. The pusher can include a slot to accommodate a suture binding mechanism of the implantable device. The delivery device can include a tip disposed at a distal end. The tip includes a tip transition zone. The inner sheath and outer tubular member can each have sections of distinct rigidity along their lengths with transition zones between the sections. A transition zone of the outer tubular member and a transition zone of the inner sheath can be longitudinally offset.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: November 12, 2019
    Assignee: Merit Medical Systems, Inc.
    Inventors: Zeke Eller, Thomas Patrick Robinson, Barton Gill, Darla Gill, Bryan K. Elwood
  • Publication number: 20180361049
    Abstract: An extracorporeal blood processing system comprises a plastic molded compact manifold that supports a plurality of molded blood and dialysate fluidic pathways along with a plurality of relevant sensors, valves and pumps. A disposable dialyzer is connected to the molded manifold to complete the blood circuit of the system. The compact manifold is also disposable in one embodiment and can be detachably installed in the dialysis machine.
    Type: Application
    Filed: June 25, 2018
    Publication date: December 20, 2018
    Inventors: Thomas Patrick Robinson, Charles E. Clemens, David Jacob Mishelevich, James Roswell Braig, Barry Neil Fulkerson, Daniele Ghidoli, Russell Thomas Joseph
  • Publication number: 20180303594
    Abstract: Stents may be deployed within a patient, such as in a lung of a patient, by inserting a stent deployment device through a channel (such as a channel of a bronchoscope) and then deploying the stent via manipulation of the stent deployment device. The stents may include one or more features that facilitate or enable positioning of the stent at a location that is distal of the right bronchus or the left bronchus. Related devices, systems, and methods are also disclosed.
    Type: Application
    Filed: April 18, 2018
    Publication date: October 25, 2018
    Inventors: Zeke Eller, Thomas Patrick Robinson, Bryan K. Elwood
  • Publication number: 20180263797
    Abstract: Transluminal stents are disclosed herein. In some embodiments stents within the scope of this disclosure may comprise a first flared end and second flared end. In some embodiments, a profile of each of the first flared end and the second flared end may circumscribe a portion of separate elliptical arcs. In some embodiments, the stents are formed from braided or woven wires having a constant pitch along a middle region and continuously varying pitches along the first flared end and the second flared end. Methods of manufacturing stents are disclosed herein. Methods of using stents are also disclosed herein.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 20, 2018
    Inventors: Zeke Eller, Thomas Patrick Robinson, Bryan K. Elwood
  • Publication number: 20180263799
    Abstract: Prosthesis deployment devices are disclosed herein. In some embodiments, the prosthesis deployment device comprises an elongate delivery catheter assembly configured for electrosurgery and also configured to retain and deploy a prosthesis. Kits comprising the prosthesis deployment devices with a prosthesis loaded into a prosthesis pod of the device are disclosed herein as well as methods of using the prosthesis deployment devices.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 20, 2018
    Inventors: Bryan K. Elwood, Thomas Patrick Robinson, Zeke Eller, John Twomey
  • Patent number: 10034973
    Abstract: An extracorporeal blood processing system comprises a plastic molded compact manifold that supports a plurality of molded blood and dialysate fluidic pathways along with a plurality of relevant sensors, valves and pumps. A disposable dialyzer is connected to the molded manifold to complete the blood circuit of the system. The compact manifold is also disposable in one embodiment and can be detachably installed in the dialysis machine.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: July 31, 2018
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Thomas Patrick Robinson, Charles E. Clemens, David Jacob Mishelevich, James Roswell Braig, Barry Neil Fulkerson, Daniele Ghidoli, Russell Thomas Joseph
  • Patent number: 9681969
    Abstract: Systems and methods are disclosed for delivering a stent to a lumen internal to a body of a patient and for sheathing a stent just prior to an insertion procedure. One embodiment comprises a delivery device having a partially sheathed configuration, a fully sheathed delivery configuration, and a deployed configuration. A panchor (combination pusher and anchor) is configured to engage and limit proximal and distal movement of the implantable device. An outer sheath surrounds a distal portion of an inner member and retains the implantable device near the distal end. The outer sheath is slidably moveable relative to the inner member to deploy the implantable device. Proximal movement of a trigger results in movement of the outer sheath to deploy the implantable device. A sheathing mechanism is configured to crimp and fully sheathe the implantable device prior to a deployment procedure.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: June 20, 2017
    Assignee: Merit Medical Systems, Inc.
    Inventor: Thomas Patrick Robinson
  • Publication number: 20170071772
    Abstract: Delivery systems and methods for deploying an implantable device are disclosed, which can include a delivery device having an outer tubular member and an inner assembly. The inner assembly is disposed within and is slidably movable relative to the outer tubular member. The inner assembly can include a pusher at a distal portion. The pusher abuts and restricts proximal movement, relative to the inner assembly, of a crimped implantable device within the outer tubular member. The pusher can include a slot to accommodate a suture binding mechanism of the implantable device. The delivery device can include a tip disposed at a distal end. The tip includes a tip transition zone. The inner sheath and outer tubular member can each have sections of distinct rigidity along their lengths with transition zones between the sections. A transition zone of the outer tubular member and a transition zone of the inner sheath can be longitudinally offset.
    Type: Application
    Filed: September 13, 2016
    Publication date: March 16, 2017
    Inventors: Zeke Eller, Thomas Patrick Robinson, Barton Gill, Darla Gill, Bryan K. Elwood
  • Publication number: 20170007756
    Abstract: An extracorporeal blood processing system comprises a plastic molded compact manifold that supports a plurality of molded blood and dialysate fluidic pathways along with a plurality of relevant sensors, valves and pumps. A disposable dialyzer is connected to the molded manifold to complete the blood circuit of the system. The compact manifold is also disposable in one embodiment and can be detachably installed in the dialysis machine.
    Type: Application
    Filed: July 11, 2016
    Publication date: January 12, 2017
    Inventors: Thomas Patrick Robinson, Charles E. Clemens, David Jacob Mishelevich, James Roswell Braig, Barry Neil Fulkerson, Daniele Ghidoli, Russell Thomas Joseph