Patents by Inventor Thomas Philip Seward, III

Thomas Philip Seward, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220397719
    Abstract: An article includes an optical transforming layer and a guide region positioned inside and adjacent to at least a portion of a perimeter of the optical transforming layer. The guide region comprises an inlet end positioned adjacent to a first surface of the optical transforming layer and an outlet end positioned adjacent a second surface of the optical transforming layer. The guide region propagates light from the inlet end to the outlet end such that the light is directed from the first surface to the second surface. The guide region includes a phase-separated glass comprising a continuous network phase and a discontinuous phase. A relative difference in index of refraction between the continuous network phase and the discontinuous phase is greater than or equal to 0.3%. The discontinuous phase comprises elongated shaped regions aligned along a common axis and having an aspect ratio greater than or equal to 10:1.
    Type: Application
    Filed: June 7, 2022
    Publication date: December 15, 2022
    Inventors: Nicholas Francis Borrelli, Ming-Jun Li, Xiao Li, David John McEnroe, Robert Adam Modavis, Daniel Aloysius Nolan, Alranzo Boh Ruffin, Vitor Marino Schneider, Thomas Philip Seward, III, Alexander Mikhailovich Streltsov
  • Publication number: 20220388895
    Abstract: Photosensitive lithium zinc aluminosilicate glasses that can be selectively irradiated and cerammed to provide patterned regions of glass and lithium-based glass ceramic, and composite glass articles made from such glasses and glass ceramics are provided. The lithium zinc aluminosilicate glass can be negatively photosensitive or positively photosensitive to radiation having a wavelength in a range from about 248 nm to about 360 nm.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Inventors: George Halsey Beall, Nicholas Francis Borrelli, Joseph Francis Schroeder, III, Thomas Philip Seward, III
  • Patent number: 11453611
    Abstract: Photosensitive lithium zinc aluminosilicate glasses that can be selectively irradiated and cerammed to provide patterned regions of glass and lithium-based glass ceramic, and composite glass articles made from such glasses and glass ceramics are provided. Compressive and tensile stress at the interface of the lithium-based glass-ceramic and lithium zinc aluminosilicate glass may be used to frustrate crack propagation in such a composite glass/glass ceramic article. Methods of making composite glass articles comprising such lithium-based glass ceramics and lithium zinc aluminosilicate glasses are also provided.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: September 27, 2022
    Assignee: Corning Incorporated
    Inventors: George Halsey Beall, Nicholas Francis Borrelli, Joseph Francis Schroeder, III, Thomas Philip Seward, III
  • Publication number: 20200247714
    Abstract: Photosensitive lithium zinc aluminosilicate glasses that can be selectively irradiated and cerammed to provide patterned regions of glass and lithium-based glass ceramic, and composite glass articles made from such glasses and glass ceramics are provided. Compressive and tensile stress at the interface of the lithium-based glass-ceramic and lithium zinc aluminosilicate glass may be used to frustrate crack propagation in such a composite glass/glass ceramic article. Methods of making composite glass articles comprising such lithium-based glass ceramics and lithium zinc aluminosilicate glasses are also provided.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Inventors: George Halsey Beall, Nicholas Francis Borrelli, Joseph Francis Schroeder, III, Thomas Philip Seward, III
  • Patent number: 10703671
    Abstract: Photosensitive lithium zinc aluminosilicate glasses that can be selectively irradiated and cerammed to provide patterned regions of glass and lithium-based glass ceramic, and composite glass articles made from such glasses and glass ceramics are provided. Compressive and tensile stress at the interface of the lithium-based glass-ceramic and lithium zinc aluminosilicate glass may be used to frustrate crack propagation in such a composite glass/glass ceramic article. Methods of making composite glass articles comprising such lithium-based glass ceramics and lithium zinc aluminosilicate glasses are also provided.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: July 7, 2020
    Assignee: Corning Incorporated
    Inventors: George Halsey Beall, Nicholas Francis Borrelli, Joseph Francis Schroeder, III, Thomas Philip Seward, III
  • Patent number: 10683232
    Abstract: A photochromic glass that includes a base glass and a photochromic agent is described. The base glass is a modified boroaluminosilicate glass and the photochromic agent is a nanocrystalline cuprous halide phase. The photochromic glass exhibits a sharp cutoff in the UV or short wavelength visible portion of the spectrum along with an absorption band at longer wavelengths in the visible. The nanocrystalline cuprous halide phase includes Cu2+, which provides states within the bandgap of the cuprous halide that permit the glass to absorb visible light. Absorption of visible light drives a photochromic transition without compromising the sharp cutoff. The nanocrystalline cuprous halide phase may optionally include Ag.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: June 16, 2020
    Assignee: Corning Incorporated
    Inventors: Roger Jerome Araujo, Nicholas Francis Borrelli, Nadja Teresia Lönnroth, David Lathrop Morse, Thomas Philip Seward, III
  • Patent number: 10649122
    Abstract: The disclosure is directed to broadband, glass optical polarizers and to methods for making the glass optical polarizers. The glass optical polarizer includes a substantially bubble free fusion drawn glass having two pristine glass surfaces and a plurality of elongated zero valent metallic particle polarizing layers.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: May 12, 2020
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, Nakia Leigh Heffner, Joseph Michael Matusick, Joseph Francis Schroeder, III, Thomas Philip Seward, III, Natesan Venkataraman
  • Publication number: 20190094439
    Abstract: The disclosure is directed to broadband, glass optical polarizers and to methods for making the glass optical polarizers. The glass optical polarizer includes a substantially bubble free fusion drawn glass having two pristine glass surfaces and a plurality of elongated zero valent metallic particle polarizing layers.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 28, 2019
    Inventors: Nicholas Francis Borrelli, Nakia Leigh Heffner, Joseph Michael Matusick, Joseph Francis Schroeder, III, Thomas Philip Seward, III, Natesan Venkataraman
  • Patent number: 10209419
    Abstract: The disclosure is directed to broadband, glass optical polarizers and to methods for making the glass optical polarizers. The glass optical polarizer includes a substantially bubble free fusion drawn glass having two pristine glass surfaces and a plurality of elongated zero valent metallic particle polarizing layers.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: February 19, 2019
    Assignee: Corning Incorporated
    Inventors: Nicholas Francis Borrelli, Nakia Leigh Heffner, Joseph Michael Matusick, Joseph Francis Schroeder, III, Thomas Philip Seward, III, Natesan Venkataraman
  • Publication number: 20190002335
    Abstract: A photochromic glass that includes a base glass and a photochromic agent is described. The base glass is a modified boroaluminosilicate glass and the photochromic agent is a nanocrystalline cuprous halide phase. The photochromic glass exhibits a sharp cutoff in the UV or short wavelength visible portion of the spectrum along with an absorption band at longer wavelengths in the visible. The nanocrystalline cuprous halide phase includes Cu2+, which provides states within the bandgap of the cuprous halide that permit the glass to absorb visible light. Absorption of visible light drives a photochromic transition without compromising the sharp cutoff. The nanocrystalline cuprous halide phase may optionally include Ag.
    Type: Application
    Filed: September 5, 2018
    Publication date: January 3, 2019
    Inventors: Roger Jerome Araujo, Nicholas Francis Borrelli, Nadja Teresia Lönnroth, David Lathrop Morse, Thomas Philip Seward, III
  • Patent number: 10150692
    Abstract: A photochromic glass that includes a base glass and a photochromic agent is described. The base glass is a modified boroaluminosilicate glass and the photochromic agent is a nanocrystalline cuprous halide phase. The photochromic glass exhibits a sharp cutoff in the UV or short wavelength visible portion of the spectrum along with an absorption band at longer wavelengths in the visible. The nanocrystalline cuprous halide phase includes Cu2+, which provides states within the bandgap of the cuprous halide that permit the glass to absorb visible light. Absorption of visible light drives a photochromic transition without compromising the sharp cutoff. The nanocrystalline cuprous halide phase may optionally include Ag.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: December 11, 2018
    Assignee: Corning Incorporated
    Inventors: Roger Jerome Araujo, Nicholas Francis Borrelli, Nadja Teresia Lönnroth, David Lathrop Morse, Thomas Philip Seward, III
  • Publication number: 20170210665
    Abstract: Photosensitive lithium zinc aluminosilicate glasses that can be selectively irradiated and cerammed to provide patterned regions of glass and lithium-based glass ceramic, and composite glass articles made from such glasses and glass ceramics are provided. Compressive and tensile stress at the interface of the lithium-based glass-ceramic and lithium zinc aluminosilicate glass may be used to frustrate crack propagation in such a composite glass/glass ceramic article. Methods of making composite glass articles comprising such lithium-based glass ceramics and lithium zinc aluminosilicate glasses are also provided.
    Type: Application
    Filed: January 24, 2017
    Publication date: July 27, 2017
    Inventors: George Halsey Beall, Nicholas Francis Borrelli, Joseph Francis Schroeder, III, Thomas Philip Seward, III
  • Publication number: 20170174558
    Abstract: A photochromic glass that includes a base glass and a photochromic agent is described. The base glass is a modified boroaluminosilicate glass and the photochromic agent is a nanocrystalline cuprous halide phase. The photochromic glass exhibits a sharp cutoff in the UV or short wavelength visible portion of the spectrum along with an absorption band at longer wavelengths in the visible. The nanocrystalline cuprous halide phase includes Cu2+, which provides states within the bandgap of the cuprous halide that permit the glass to absorb visible light. Absorption of visible light drives a photochromic transition without compromising the sharp cutoff. The nanocrystalline cuprous halide phase may optionally include Ag.
    Type: Application
    Filed: November 17, 2016
    Publication date: June 22, 2017
    Inventors: Roger Jerome Araujo, Nicholas Francis Borrelli, Nadja Teresia Lönnroth, David Lathrop Morse, Thomas Philip Seward, III
  • Publication number: 20150212247
    Abstract: The disclosure is directed to broadband, glass optical polarizers and to methods for making the glass optical polarizers. The glass optical polarizer includes a substantially bubble free fusion drawn glass having two pristine glass surfaces and a plurality of elongated zero valent metallic particle polarizing layers.
    Type: Application
    Filed: September 11, 2014
    Publication date: July 30, 2015
    Inventors: Nicholas Francis Borrelli, Nakia Leigh Heffner, Joseph Michael Matusick, Joseph Francis Schroeder, III, Thomas Philip Seward, III, Natesan Venkataraman
  • Publication number: 20090011925
    Abstract: A catalytically active glass-ceramic and method for producing a catalytically active multi-phase glass-ceramic in which at least one catalyst precursor is mixed with a glass-ceramic precursor formulation to form a catalyst precursor/glass-ceramic precursor mixture. The catalyst precursor/glass-ceramic precursor mixture is then melted to form an amorphous glass material which, in turn, is devitrified to form a polycrystalline ceramic. The polycrystalline ceramic is then activated, forming a catalytically active multi-phase glass-ceramic.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 8, 2009
    Inventors: Larry Gordon Felix, David Morrissey Rue, Thomas Philip Seward, III, Logan Edwin Weast
  • Patent number: 4086089
    Abstract: The present invention is directed to a method for producing patterned color-triad arrays in glass for use in color television picture tubes, such arrays being capable of acting as spectrally-selective filters and to provide the desired color information when the television tube is operating. The color-triad arrays are produced by sequentially or simultaneously exposing a polychromatic glass through an electron shadow mask to high energy or actinic radiation and thereafter following the heat treatment and re-exposure practice known to develop colors within polychromatic glass. The filtering action provided by the color triads integrally present within the glass can enhance the contrast of the color image produced. Also, the presence of the color triads in the glass permits the use of a single "white" phosphor, rather than a red, a green and a blue phosphor as are presently used in the conventional color television picture tube.
    Type: Grant
    Filed: March 17, 1977
    Date of Patent: April 25, 1978
    Assignee: Corning Glass Works
    Inventors: Thomas Philip Seward, III, Brent Merle Wedding