Patents by Inventor Thomas R. Fritsch

Thomas R. Fritsch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7795483
    Abstract: The present invention is a process for producing phenyl-alkanes by paraffin adsorptive separation followed by paraffin dehydrogenation and then by alkylation of a phenyl compound by a lightly branched olefin. The adsorptive separation step employs a silicalite adsorbent and, as the desorbent, a C5-C8 linear paraffin, a C5-C8 cycloparaffin, a branched paraffin such as isooctane, or mixtures thereof. The effluent of the alkylation zone comprises paraffins that are recycled to the adsorptive separation step or to the dehydrogenation step. This invention is also a process that that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: September 14, 2010
    Assignee: UOP LLC
    Inventors: Santi Kulprathipanja, Richard E. Marinangeli, Stephen W. Sohn, Thomas R. Fritsch, R. Joe Lawson
  • Publication number: 20090239036
    Abstract: Apparatus and processes that include tiles having a roughened top side of grit. The grit on the top surface imparts a durable and slip-resistant property to the tile.
    Type: Application
    Filed: March 21, 2008
    Publication date: September 24, 2009
    Applicant: StrongGo LLC
    Inventors: Georg R. Becker, Thomas R. Fritsch
  • Publication number: 20040147792
    Abstract: A process for producing phenyl-alkanes by paraffin dehydrogenation followed by olefin isomerization and then by alkylation of a phenyl compound by a lightly branched olefin is disclosed. An effluent of the alkylation section comprises paraffins that are recycled to the dehydrogenation step. A process that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups to produce modified alkylbenzene sulfonates is also disclosed. In addition, the compositions produced by these processes, which can comprise detergents, lubricants, and lubricant additives, are disclosed.
    Type: Application
    Filed: December 19, 2003
    Publication date: July 29, 2004
    Inventors: Richard E. Marinangeli, Leonid B. Galperin, Thomas R. Fritsch, R. Joe Lawson
  • Publication number: 20040116756
    Abstract: The present invention is a process for producing phenyl-alkanes by paraffin adsorptive separation followed by paraffin dehydrogenation and then by alkylation of a phenyl compound by a lightly branched olefin. The adsorptive separation step employs a silicalite adsorbent and, as the desorbent, a C5-C8 linear paraffin, a C5-C8 cycloparaffin, a branched paraffin such as isooctane, or mixtures thereof. The effluent of the alkylation zone comprises paraffins that are recycled to the adsorptive separation step or to the dehydrogenation step. This invention is also a process that that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives.
    Type: Application
    Filed: September 9, 2003
    Publication date: June 17, 2004
    Inventors: Santi Kulprathipanja, Richard E. Marinangeli, Stephen W. Sohn, Thomas R. Fritsch, R. Joe Lawson
  • Patent number: 6670516
    Abstract: A process for producing phenyl-alkanes by paraffin dehydrogenation followed by olefin isomerization and then by alkylation of a phenyl compound by a lightly branched olefin is disclosed. An effluent of the alkylation section comprises paraffins that are recycled to the dehydrogenation step. A process that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups to produce modified alkylbenzene sulfonates is also disclosed. In addition, the compositions produced by these processes, which can comprise detergents, lubricants, and lubricant additives, are disclosed.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: December 30, 2003
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, Leonid B. Galperin, Thomas R. Fritsch, R. Joe Lawson
  • Patent number: 6617481
    Abstract: The present invention is a process for producing phenyl-alkanes by paraffin adsorptive separation followed by paraffin dehydrogenation and then by alkylation of a phenyl compound by a lightly branched olefin. The adsorptive separation step employs a silicalite adsorbent and, as the desorbent, a C5-C8 linear paraffin, a C5-C8 cycloparaffin, a branched paraffin such as isooctane, or mixtures thereof. The effluent of the alkylation zone comprises paraffins that are recycled to the adsorptive separation step or to the dehydrogenation step. This invention is also a process that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: September 9, 2003
    Assignee: UOP LLC
    Inventors: Santi Kulprathipanja, Richard E. Marinangeli, Stephen W. Sohn, Thomas R. Fritsch, R. Joe Lawson
  • Patent number: 6515169
    Abstract: The present invention is a process for producing aryl-alkanes by paraffin isomerization followed by paraffin dehydrogenation and then by alkylation of an aryl compound by a lightly branched olefin. The effluent of the alkylation zone comprises paraffins that are recycled to the isomerization step or to the dehydrogenation step. This invention is also a process that that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives. This invention is moreover the use of compositions produced by these processes as lubricants and lubricant additives.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: February 4, 2003
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, R. Joe Lawson, Leonid B. Galperin, Thomas R. Fritsch
  • Patent number: 6448458
    Abstract: The present invention is a process for producing aryl-alkanes by paraffin isomerization followed by paraffin dehydrogenation and then by alkylation of an aryl compound by a lightly branched olefin. The effluent of the alkylation zone comprises paraffins that are recycled to the isomerization step or to the dehydrogenation step. This invention is also a process that that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives. This invention is moreover the use of compositions produced by these processes as lubricants and lubricant additives.
    Type: Grant
    Filed: November 3, 2000
    Date of Patent: September 10, 2002
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, R. Joe Lawson, Leonid B. Galperin, Thomas R. Fritsch
  • Patent number: 6187981
    Abstract: The present invention is a process for producing aryl-alkanes by paraffin isomerization followed by paraffin dehydrogenation and then by alkylation of an aryl compound by a lightly branched olefin. The effluent of the alkylation zone comprises paraffins that are recycled to the isomerization step or to the dehydrogenation step. This invention is also a process that that sulfonates phenyl-alkanes having lightly branched aliphatic alkyl groups that to produce modified alkylbenzene sulfonates. In addition, this invention is the compositions produced by these processes, which can be used as detergents having improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates, as lubricants, and as lubricant additives. This invention is moreover the use of compositions produced by these processes as lubricants and lubricant additives.
    Type: Grant
    Filed: July 19, 1999
    Date of Patent: February 13, 2001
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, R. Joe Lawson, Leonid B. Galperin, Thomas R. Fritsch
  • Patent number: 6169219
    Abstract: Detergent-quality linear alkylaromatics are recovered from an alkylation reactor effluent containing polymeric byproducts, such as dimers and trimers of the olefinic feedstock. The effluent stream passes to another reactor operating at a higher temperature than the first reactor. Heavy alkylate is separated from the detergent-quality linear alkylaromatics by conventional separation methods such as distillation. This invention decreases the concentration of polymeric byproducts in the linear alkylaromatics. The benefits of this invention include a higher linearity and/or a lower bromine index in the detergent-quality linear alkylaromatic product, as well as a lower color after sulfonation of the linear alkylbenzene sulfonate.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: January 2, 2001
    Assignee: UOP LLC
    Inventors: Masami Kojima, Thomas R. Fritsch, Kurt A. Detrick
  • Patent number: 6111158
    Abstract: The present invention is a process for producing phenyl-alkanes at alkylation conditions in the presence of a zeolite having an NES zeolite structure type, such as NU-87. This invention produces phenyl-alkanes having lightly branched aliphatic alkyl groups which are used to produce modified alkylbenzene sulfonates that have improved cleaning effectiveness in hard and/or cold water while also having biodegradability comparable to that of linear alkylbenzene sulfonates.
    Type: Grant
    Filed: March 4, 1999
    Date of Patent: August 29, 2000
    Assignee: UOP LLC
    Inventors: Richard E. Marinangeli, Michael G. Gatter, R. Joe Lawson, Thomas R. Fritsch
  • Patent number: 6069285
    Abstract: An integrated alkylaromatic process using a solid alkylation catalyst and an aromatic rectifier is disclosed for alkylating aromatics with olefins and for regenerating the solid alkylation catalyst. The aromatic rectifier produces a relatively low-purity aromatic-containing overhead stream that is used in producing alkylaromatics, and an aromatic column produces a relatively high-purity aromatic-containing overhead stream that is used in regenerating the solid alkylation catalyst. In another embodiment, this process is further integrated with a paraffin dehydrogenation zone and an aromatic by-products removal zone. This invention produces the benzene-containing streams that are necessary for alkylating and for regenerating in a more economical manner than prior art processes.
    Type: Grant
    Filed: June 9, 1999
    Date of Patent: May 30, 2000
    Assignee: UOP LLC
    Inventors: Thomas R. Fritsch, Steven F. Eshelman, Dennis E. O'Brien
  • Patent number: 5406011
    Abstract: An improved process for the catalytic dehydrogenation of paraffinic hydrocarbons is disclosed. Feed paraffinic hydrocarbons are dehydrogenated by means of contacting the dehydrogenatable hydrocarbon with a dehydrogenation catalyst in a first dehydrogenation zone wherein the endothermic dehydrogenation reaction reduces the temperature of the resulting hydrocarbon stream containing dehydrogenated hydrocarbon compounds. The resulting effluent from the first dehydrogenation zone is then contacted with a stream of gas comprising normally gaseous hydrocarbon compounds having a temperature greater than the hydrocarbon stream to increase the temperature of the hydrocarbon stream and then introducing the resulting heated stream into a second dehydrogenation zone to produce additional dehydrogenated hydrocarbon compounds.
    Type: Grant
    Filed: April 6, 1994
    Date of Patent: April 11, 1995
    Assignee: UOP
    Inventors: William H. Radcliffe, Thomas R. Fritsch, Bipin V. Vora
  • Patent number: 5157181
    Abstract: Moving bed hydrocarbon conversion processes are disclosed wherein a carbonaceous material is deposited on a solid catalyst used in the conversion process to form a coked catalyst which is regenerated in a regeneration zone in order to remove the carbonaceous deposit material from the catalyst and provide a regenerated catalyst having an increased number of active catalyst sites relative to the coked catalyst. The regenerated catalyst is then added to the reaction zone at a rate effective to enhance the conversion to desired products without enhancing the conversion to undesired by-products. When a radial flow reaction zone is employed a relatively constant amount of active catalyst sites can be maintained through the reaction zone by increasing the thickness of annulus through which the catalyst flows in the lower section of the reaction zone wherein the catalyst is more severely coked and has fewer active catalyst sites.
    Type: Grant
    Filed: December 3, 1990
    Date of Patent: October 20, 1992
    Assignee: UOP
    Inventors: Laurence O. Stine, Howard E. Fullerton, Thomas R. Fritsch, Paul T. Barger
  • Patent number: 4861930
    Abstract: A combination process for the conversion of C.sub.2 -C.sub.6 aliphatic hydrocarbons into easily transportable hydrocarbons of greater molecular weight. The combination process comprises converting the C.sub.2 -C.sub.6 aliphatic hydrocarbons to aromatic hydrocarbons in a dehydrocyclodimerization reaction zone after which the aromatic is directly hydrogenated in the presence of hydrogen from the dehydrocyclodimerization reaction step to produce large transportable aliphatic hydrocarbons. It is also an aspect of the invention that the hot hydrogenation reaction zone product stream is used to preheat the feed stream to the dehydrocyclodimerization reaction zone.
    Type: Grant
    Filed: September 28, 1988
    Date of Patent: August 29, 1989
    Assignee: UOP
    Inventors: Paul R. Cottrell, Thomas R. Fritsch, Christopher D. Gosling
  • Patent number: 4128593
    Abstract: A mixture of cymene isomers, containing paracymene is subjected to adsorption-separation in contact with a crystalline aluminosilicate adsorbent which selectively retains para-cymene. Raffinate therefrom, being a para-cymene deficient mixture of cymene isomers, is isomerized to form additional para-cymene. Isomerization conditions employed to produce para-cymene, also effect formation of olefinic material. To prevent the adverse effect which olefins exhibit toward the efficiency and capacity of the zeolitic adsorbent, the isomerization effluent is subjected to hydrotreating at conditions which provide a liquid-phase operation and saturate olefins without saturation of the cymene isomers.
    Type: Grant
    Filed: April 17, 1978
    Date of Patent: December 5, 1978
    Assignee: UOP Inc.
    Inventors: Thomas R. Fritsch, Mark C. Anderson
  • Patent number: 4118429
    Abstract: A C.sub.8 -aromatic hydrocarbon mixture containing para-xylene is subjected to adsorption-separation in contact with a crystalline aluminosilicate adsorbent which selectively retains para-xylene. Raffinate therefrom, being a para-xylene deficient C.sub.8 -aromatic concentrate, is isomerized in contact with a catalytic composite containing a Group VIII noble metal component to form additional para-xylene. Isomerization conditions employed to produce the para-xylene, also effect the formation of olefinic material. To prevent the adverse effect which olefins exhibit toward the efficiency and capacity of the zeolitic adsorbent, the isomerization effluent is subjected to hydrotreating at conditions which provide a liquid-phase operation and saturate olefins without saturation of the C.sub.8 -aromatics. The hydrotreating is effected in contact with a substantially non-acidic catalytic composite comprising a Group VIII noble metal component.
    Type: Grant
    Filed: September 26, 1977
    Date of Patent: October 3, 1978
    Assignee: UOP Inc.
    Inventors: Thomas R. Fritsch, Mark C. Anderson