Patents by Inventor Thomas R. Giallorenzi

Thomas R. Giallorenzi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11677425
    Abstract: Systems and methods for evaluating link performance over a multitude of frequencies for Signal-to-Noise Ratio (SNR) optimization and mitigating interference. The methods comprise: communicating, from a first communication device, a first signal over a given channel in a given frequency band; receiving, by the first communication device, spectral power measurements and a Signal-to-Total Power Ratio (STPR) estimate determined based on a second signal including the first signal combined with at least one of noise and one or more interference signals (the STPR estimate accounts for the receiver performance including chip rate processing gain and/or the performance of an interference cancellation circuit used to remove the interference signals from the second signal); and determining, by the first communication device, a predicted Signal-to-Noise Ratio (SNR) condition for a plurality of frequencies within the given frequency band using the STPR estimate and the spectral power measurements.
    Type: Grant
    Filed: October 13, 2021
    Date of Patent: June 13, 2023
    Assignee: L3HARRIS TECHNOLOGIES, INC.
    Inventors: Radivoje Zarubica, Jeffrey B. Bench, Brent A. Kenney, Philip M. Hirz, Thomas R. Giallorenzi, Brian J. Thorp, James E. Hawker, Lee F. Carter, Marley D. Hamblin, Edwin R. Twitchell, Rhett B. McCarthy
  • Publication number: 20230112645
    Abstract: Systems and methods for evaluating link performance over a multitude of frequencies for Signal-to-Noise Ratio (SNR) optimization and mitigating interference. The methods comprise: communicating, from a first communication device, a first signal over a given channel in a given frequency band; receiving, by the first communication device, spectral power measurements and a Signal-to-Total Power Ratio (STPR) estimate determined based on a second signal including the first signal combined with at least one of noise and one or more interference signals (the STPR estimate accounts for the receiver performance including chip rate processing gain and/or the performance of an interference cancellation circuit used to remove the interference signals from the second signal); and determining, by the first communication device, a predicted Signal-to-Noise Ratio (SNR) condition for a plurality of frequencies within the given frequency band using the STPR estimate and the spectral power measurements.
    Type: Application
    Filed: October 13, 2021
    Publication date: April 13, 2023
    Inventors: Radivoje Zarubica, Jeffrey B. Bench, Brent A. Kenney, Philip M. Hirz, Thomas R. Giallorenzi, Brian J. Thorp, James E. Hawker, Lee F. Carter, Marley D. Hamblin, Edwin R. Twitchell, Rhett B. McCarthy
  • Publication number: 20210223353
    Abstract: Methods and systems for dynamically modifying a sampling operation of a sensor. The method includes obtaining a dynamically changing transmission characteristic based on an available channel bandwidth parameter. The dynamically changing transmission characteristic includes at least one of a sample rate, a time period, or a spectral bandwidth. The method further includes updating the sampling operation of the sensor based on the dynamically changing transmission characteristic. The method further includes measuring signal energy at a location of the sensor. The method further includes sampling the signal energy using the sampling operation to obtain sampled data. The method further includes providing the sampled data to a processing entity configured to analyze the data using a dynamically updated cross-ambiguity function.
    Type: Application
    Filed: April 7, 2021
    Publication date: July 22, 2021
    Inventors: Thomas R. Giallorenzi, Radivoje Zarubica, N. Thomas Nelson, Philip M. Hirz, Andrew L. Nelson
  • Patent number: 11022670
    Abstract: Methods and systems adapted for providing a dynamically updated geolocation system. The geolocation system measures a signal, samples the signal, and applies a cross-ambiguity function to the sampled data to calculate the location of a signal source. The sampling operation and cross-ambiguity function are updated opportunistically and adaptively based on available channel resources between a plurality of sensors and a central processing location in the system. These update methods allow control of the data rate when channel resources are impacted by the physical environment where the geolocation system is operating.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: June 1, 2021
    Assignee: L3HARRIS TECHNOLOGIES, INC.
    Inventors: Thomas R. Giallorenzi, Radivoje Zarubica, N. Thomas Nelson, Philip M. Hirz, Andrew L. Nelson
  • Patent number: 10880775
    Abstract: Transmitting a signal from a transmitter. A method includes identifying a threshold spectral flux density for a given physical location. The method further includes, as a result of identifying the threshold spectral flux density, transmitting a signal at a power level causing the signal to be below the spectral flux density at the given physical location, the signal being transmitted at a data rate. The method further includes receiving feedback from a receiver indicating the signal-to-noise ratio of the signal at the receiver. The method further includes adjusting the data rate of the signal based on the feedback. The method further includes continuing transmitting the signal at the adjusted data rate and power level.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: December 29, 2020
    Assignee: L3Harris Technologies, Inc.
    Inventors: Thomas R. Giallorenzi, Samuel C. Kingston, Nicholas T. Yaskoff, Radivoje Zarubica, Eric K. Hall
  • Publication number: 20200367098
    Abstract: Transmitting a signal from a transmitter. A method includes identifying a threshold spectral flux density for a given physical location. The method further includes, as a result of identifying the threshold spectral flux density, transmitting a signal at a power level causing the signal to be below the spectral flux density at the given physical location, the signal being transmitted at a data rate. The method further includes receiving feedback from a receiver indicating the signal-to-noise ratio of the signal at the receiver. The method further includes adjusting the data rate of the signal based on the feedback. The method further includes continuing transmitting the signal at the adjusted data rate and power level.
    Type: Application
    Filed: May 14, 2019
    Publication date: November 19, 2020
    Inventors: Thomas R. Giallorenzi, Samuel C. Kingston, Nicholas T. Yaskoff, Radivoje Zarubica, Eric K. Hall
  • Publication number: 20200358716
    Abstract: Sending network data. A method includes transmitting data on a communication link, in an environment. A network control overhead portion of the data is allocated to network control overhead data packets for controlling how data is transmitted on the communication link. A user data portion of the data is allocated to user data packets for transmitting data between users of nodes on the communication link. A change in data capacity of the communication link is identified. As a result, a change is made in the network control overhead portion of the data, changing at least one of frequency of network control overhead data packets or size of network control overhead data packets to attempt to maintain a predetermined proportion factor for the network control overhead portion as compared to the user data portion. The network control overhead portion of the data is transmitted according to the change.
    Type: Application
    Filed: May 9, 2019
    Publication date: November 12, 2020
    Inventors: Matthew J. Reimann, Thomas R. Giallorenzi, Brent Kenney, Chad S. Komer, Brian Thorp, Philip M. Hirz, Jason Wilden
  • Patent number: 10834020
    Abstract: Sending network data. A method includes transmitting data on a communication link, in an environment. A network control overhead portion of the data is allocated to network control overhead data packets for controlling how data is transmitted on the communication link. A user data portion of the data is allocated to user data packets for transmitting data between users of nodes on the communication link. A change in data capacity of the communication link is identified. As a result, a change is made in the network control overhead portion of the data, changing at least one of frequency of network control overhead data packets or size of network control overhead data packets to attempt to maintain a predetermined proportion factor for the network control overhead portion as compared to the user data portion. The network control overhead portion of the data is transmitted according to the change.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: November 10, 2020
    Assignee: L3HARRIS TECHNOLOGIES, INC.
    Inventors: Matthew J. Reimann, Thomas R. Giallorenzi, Brent Kenney, Chad S. Komer, Brian Thorp, Philip M. Hirz, Jason Wilden
  • Patent number: 10797899
    Abstract: Sending data on a network based on limiting the propagation of data based on a distance between a sender of the data and one or more receivers of the data. A method includes determining a maximum distance that a message should travel in a network from a sender to a receiver. The method further includes configuring a distance property or distance proxy property conforming with the determined distance. The method further includes sending the message by transmitting the message in a fashion that causes the message to be carried on the network in compliance with the configured distance property or distance proxy property.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 6, 2020
    Assignee: L3 TECHNOLOGIES, INC.
    Inventors: Michael S. Feeney, Matthew J. Reimann, Thomas R. Giallorenzi, Brian Thorp, Chad S. Komer, Charles C. Hardy, Stephen M. Dudley
  • Patent number: 10707575
    Abstract: Optimizations are provided for controlling an amount of radiated power (i.e. spectral flux density) that is being transmitted to a particular location. To that end, one or more antennas are used to transmit a power signal. Then, position information for each of those antennas is determined. Additionally, environmental information for the environment in which the antennas are operating is also determined. Also, an antenna radiation pattern for each of those antennas is also determined. Thereafter, how much power is radiated to a particular location is controlled so that the power never exceeds a certain threshold value. This control is achieved by dynamically adjusting the transmit power of the antennas based on the information obtained from the position information, the environmental information, and the antenna radiation pattern information.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: July 7, 2020
    Assignee: L3 Technologies, Inc.
    Inventors: Radivoje Zarubica, Brent Kenney, Phillip M. Hirz, Thomas R. Giallorenzi, Andrew L. Nelson, Jason Wilden
  • Patent number: 10652806
    Abstract: Transmitting a probe signal. A method includes transmitting a signal, having a predetermined total power, during a transmit cycle. The signal has a traffic channel transmitting user data and a probe channel to locate new nodes to add to the network. The transmit channel uses a first portion of the total power and the probe channel uses a second portion of the total power. The method further includes performing a probe cycle by lowering the power in the first portion of the total power and raising the power in the second portion of the total power, but maintaining the total power at the same level as the total power during the transmit cycle. The method further includes, after the probe cycle, raising the power in the first portion of the total power and lowering the power in the second portion of the total power.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: May 12, 2020
    Assignee: L3 Technologies, Inc.
    Inventors: Philip M. Hirz, Brent Kenney, Thomas R. Giallorenzi, Matthew J. Reimann, Patrick L. Newbold
  • Patent number: 10598762
    Abstract: Geolocating an emitter of a low probability of detection (LPD) signal being transmitted from the emitter in an environment with a noise floor, where the LPD signal is below the noise floor. At a sensor node, a version of the LPD signal is received from the emitter. For the version of the LPD signal, cyclostationary feature detection or energy detection of the version of the LPD signal is performed. A low probability of detection descriptor word, including at least one of a frequency feature of the version of the LPD signal or an energy feature of the version of the LPD signal is created. The low probability of detection descriptor word is provided to a data processor, where the data processor is configured to use a plurality of low probability of detection descriptor words from different sensor nodes for different versions of the LPD signal to geolocate the emitter.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: March 24, 2020
    Assignee: L3 Technologies Inc.
    Inventors: Thomas R. Giallorenzi, Radivoje Zarubica, N. Thomas Nelson, Philip M. Hirz, Andrew L. Nelson
  • Patent number: 10356843
    Abstract: Embodiments are directed to systems and methods for selecting appropriate transmission configurations in a mobile ad hoc frequency division duplexing mesh network. In one scenario, a node receives transmission parameters from a neighboring node, where the transmission parameters include an indication of the node's current transmission configuration. The node receives network parameters from neighboring nodes, where the network parameters include connection information describing the node's current network connection to the neighboring nodes. Then, based on the received transmission parameters and the received network parameters, the node calculates a change factor which indicates the desirability of changing transmission configuration.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: July 16, 2019
    Assignee: L3 Technologies, Inc.
    Inventors: Radivoje Zarubica, Matthew J. Reimann, Thomas R. Giallorenzi, Brent Kenney, Jason Wilden, Phillip M. Hirz
  • Patent number: 10186059
    Abstract: Embodiments are directed to representing radio frequency (RF) signals in a visualization using particle bursts. In one scenario, a computer system instantiates RF signal sources in a virtualization, where each RF signal source is configured to emit RF signals. The computer system then generates a stream of particle bursts to represent at least one of the emitted RF signals, and provides a visualization that shows the instantiated RF signal sources along with the generated particle bursts representing the emitted RF signals. In some cases, the visualization may be used to illustrate an anti-access, aerial denial (A2AD) environment. In other cases, the visualization may be used to illustrate network communications using particles, where each particle represents network data packets.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: January 22, 2019
    Assignee: L3 Communications Corp.
    Inventors: Adrian Musters, Thomas R. Giallorenzi, Joseph J. Booker, Joe M. Brown, Dimitri Negroponte, Sam Leventer, Clinton B. Hope
  • Patent number: 10181972
    Abstract: Embodiments are directed to systems and methods for communicating between nodes in a mobile ad hoc network. In one scenario, a node in a mobile ad hoc network communicates with another node in the network using both code division multiple access (CDMA) and frequency division duplexing. The communication is coded prior to transmission to the other node, and includes applying direct sequence spread spectrum (DSSS) modulation to a transmission signal at a specified bit rate over a specified spectrum. The DSSS coding is applied in accordance with a processing gain which spreads the spectrum relative to the bit rate of the transmission. The coded communication is then transmitted over a specified frequency band allocated to the node over which the node transmits data and over which the other node receives the data.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: January 15, 2019
    Assignee: L3 Technologies, Inc.
    Inventors: Thomas R. Giallorenzi, Phillip M. Hirz, N. Thomas Nelson, Brent Kenney, Radivoje Zarubica, Jason Wilden
  • Patent number: 10140772
    Abstract: Embodiments are directed to visualizing electromagnetic (EM) particle emissions in a computer-generated virtual environment. In one scenario, a computer system accesses portions of data representing EM particle emissions emitted by a virtualized EM particle emitter. The computer system generates a particle visualization that includes at least a portion of the EM particle emissions being emitted from the virtualized EM particle emitter within the virtual environment. The particle visualization includes an indication of the EM particle emissions' interactions with other virtual or non-virtual elements in the virtual environment. The computer system then presents the generated particle visualization in the computer-generated virtual environment. In some cases, the computer system further receives user input intended to interact with virtual elements within the virtual environment.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: November 27, 2018
    Assignee: L3 Technologies, Inc.
    Inventors: Nathan H. Stoddart, Adrian Musters, Thomas R. Giallorenzi, Zachary D. Jenkins, Joseph J. Booker, Braden J. Bartlett, David R. Heath, Ashley M. Holt, Michael D. Jackson, Jason C. Newbold, Dallin S. Pabst, Jonathan C. Sanderson, Benjamin I. Smart, Lily Wang
  • Patent number: 9983247
    Abstract: The presence of a hidden signal can be detected efficiently using frequency domain multiplication. A detector system can be employed to search for a hidden signal across a wide spectrum in real time. The detector system can divide multiple antenna inputs into a series of blocks and then convert these blocks to the frequency domain possibly in a parallel fashion. Corresponding blocks from each input can then be conjugate multiplied, and the results of this conjugate multiplication can then be averaged over time. If a signal is hidden in the inputs, this averaging will reduce the noise floor thereby revealing the presence of the hidden signal at a particular frequency.
    Type: Grant
    Filed: January 18, 2017
    Date of Patent: May 29, 2018
    Assignee: L-3 Communications Corp.
    Inventors: Samuel C Kingston, Radivoje Zarubica, Ryan W Hinton, Joshua D Gunn, Thomas R Giallorenzi
  • Publication number: 20180083723
    Abstract: Embodiments are directed to representing radio frequency (RF) signals in a visualization using particle bursts. In one scenario, a computer system instantiates RF signal sources in a virtualization, where each RF signal source is configured to emit RF signals. The computer system then generates a stream of particle bursts to represent at least one of the emitted RF signals, and provides a visualization that shows the instantiated RF signal sources along with the generated particle bursts representing the emitted RF signals. In some cases, the visualization may be used to illustrate an anti-access, aerial denial (A2AD) environment. In other cases, the visualization may be used to illustrate network communications using particles, where each particle represents network data packets.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 22, 2018
    Inventors: Adrian Musters, Thomas R. Giallorenzi, Joseph J. Booker, Joe M. Brown, Dimitri Negroponte, Sam Leventer, Clinton B. Hope
  • Publication number: 20180082473
    Abstract: Embodiments are directed to visualizing electromagnetic (EM) particle emissions in a computer-generated virtual environment. In one scenario, a computer system accesses portions of data representing EM particle emissions emitted by a virtualized EM particle emitter. The computer system generates a particle visualization that includes at least a portion of the EM particle emissions being emitted from the virtualized EM particle emitter within the virtual environment. The particle visualization includes an indication of the EM particle emissions' interactions with other virtual or non-virtual elements in the virtual environment. The computer system then presents the generated particle visualization in the computer-generated virtual environment. In some cases, the computer system further receives user input intended to interact with virtual elements within the virtual environment.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 22, 2018
    Inventors: Nathan H. Stoddart, Adrian Musters, Thomas R. Giallorenzi, Zachary D. Jenkins, Joseph J. Booker, Braden J. Bartlett, David R. Heath, Ashley M. HOLT, Michael D. Jackson, Jason C. Newbold, Dallin S. Pabst, Jonathan C. Sanderson, Benjamin I. Smart, Lily Wang
  • Patent number: 9214915
    Abstract: The estimated gain profile of an amplifier can be modified during operation of the amplifier utilizing detected values of the amplification level of signals produced by the amplifier. The amplification levels can be detected at a location that is remote from the amplifier. New expected amplification levels can be determined for corresponding control signal values in the estimated gain profile. Digital filtering such as Kalman filtering can be used to determine the new expected amplification levels. The estimated gain profile can be modified with the new expected amplification levels.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: December 15, 2015
    Assignee: L-3 Communications Corp.
    Inventors: Samuel C. Kingston, Jason J. Wilden, Radivoje Zarubica, Thomas R. Giallorenzi