Patents by Inventor Thomas R. Halbert

Thomas R. Halbert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8894844
    Abstract: The invention includes a hydrotreating method for increased CO content comprising: contacting an olefinic naphtha feedstream with a hydrogen-containing treat gas stream and a hydrotreating catalyst in a reactor under hydrotreating conditions sufficient to at least partially hydrodesulfurize and/or hydrodenitrogenate the feedstream, wherein the feedstream and the hydrogen-containing treat gas stream collectively have greater than 10 vppm CO content and/or wherein the reactor inlet sees an average CO concentration of greater than 10 vppm, wherein the hydrotreating catalyst comprises a catalyst having cobalt and molybdenum disposed on a silica-based support, and wherein the hydrotreating conditions are selected such that the catalyst has a relative HDS activity at least 10% greater than an identical catalyst under identical conditions except for a collective CO content of the feedstream and/or hydrogen-containing treat gas being <10 vppm and/or a reactor inlet CO content <10 vppm.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: November 25, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: April D. Ross, Thomas R. Halbert, William J. Novak, John P. Greeley
  • Publication number: 20120241360
    Abstract: The invention includes a hydrotreating method for increased CO content comprising: contacting an olefinic naphtha feedstream with a hydrogen-containing treat gas stream and a hydrotreating catalyst in a reactor under hydrotreating conditions sufficient to at least partially hydrodesulfurize and/or hydrodenitrogenate the feedstream, wherein the feedstream and the hydrogen-containing treat gas stream collectively have greater than 10 vppm CO content and/or wherein the reactor inlet sees an average CO concentration of greater than 10 vppm, wherein the hydrotreating catalyst comprises a catalyst having cobalt and molybdenum disposed on a silica-based support, and wherein the hydrotreating conditions are selected such that the catalyst has a relative HDS activity at least 10% greater than an identical catalyst under identical conditions except for a collective CO content of the feedstream and/or hydrogen-containing treat gas being <10 vppm and/or a reactor inlet CO content <10 vppm.
    Type: Application
    Filed: March 20, 2012
    Publication date: September 27, 2012
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: April D. Ross, Thomas R. Halbert, William J. Novak, John P. Greeley
  • Patent number: 8216958
    Abstract: A method for hydrodesulfurizing FCC naphtha is described. More particularly, a Co/Mo metal hydrogenation component is loaded on a silica or modified silica support in the presence of organic ligand and sulfided to produce a catalyst which is then used for hydrodesulfurizing FCC naphtha. The silica support has a defined pore size distribution which minimizes olefin saturation.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: July 10, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jason Wu, Chuansheng Bai, Thomas R. Halbert, Stuart L. Soled, Sabato Miseo, Jonathan M. McConnachie, Valery Sokolovskii, David M. Lowe, Anthony F. Volpe, Jr., Jun Han
  • Patent number: 7988848
    Abstract: This invention relates to a process for activating a hydroprocessing catalyst and the use of activated catalyst for hydroprocessing. More particularly, hydroprocessing catalysts are activated in the presence of carbon monoxide. The catalysts that have been activated by CO treatment have improved activity.
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: August 2, 2011
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Garland B. Brignac, Andrew C. Moreland, Thomas R. Halbert
  • Patent number: 7875167
    Abstract: A low hydrogen partial pressure process for desulfurizing naphtha in the presence of a hydrodesulfurization catalyst which catalyst is selective for suppressing hydrogenation of olefins and in the presence. This invention also relates to the use of optimum metals loading for achieving a high level of hydrodesulfurization with a low level of olefin saturation.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: January 25, 2011
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Garland Brignac, Thomas R. Halbert, John P. Greeley
  • Publication number: 20100320123
    Abstract: A method for hydrodesulfurizing FCC naphtha is described. More particularly, a Co/Mo metal hydrogenation component is loaded on a silica or modified silica support in the presence of organic ligand and sulfided to produce a catalyst which is then used for hydrodesulfurizing FCC naphtha. The silica support has a defined pore size distribution which minimizes olefin saturation.
    Type: Application
    Filed: January 12, 2007
    Publication date: December 23, 2010
    Inventors: Jason Wu, Chuansheng Bai, Thomas R. Halbert, Stuart L. Soled, Sabato Miseo, Jonathan M. Mcconnachie, Valery Sokolovskii, David M. Lowe, Anthony F. Volpe, JR., Jun Han
  • Patent number: 7799210
    Abstract: A three-step process of removing sulfur from naphtha feeds. The steps include a first hydrotreating step, a mercaptan removal agent and an adsorbent containing a reactive metal on an inorganic support. Step one removes at least 95 wt. % of the sulfur compounds while preserving at least 50 wt. % of the olefins. Treatment with the mercaptan removal agent lowers the sulfur content to 30 wppm total sulfur and final naphtha product contains leas than 10 wppm total sulfur.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: September 21, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jeffrey M. Dysard, Gordon F. Stuntz, Thomas R. Halbert, Andrzej Malek
  • Publication number: 20090166263
    Abstract: A low hydrogen partial pressure process for desulfurizing naphtha in the presence of a hydrodesulfurization catalyst which catalyst is selective for suppressing hydrogenation of olefins and in the presence. This invention also relates to the use of optimum metals loading for achieving a high level of hydrodesulfurization with a low level of olefin saturation.
    Type: Application
    Filed: December 31, 2007
    Publication date: July 2, 2009
    Inventors: Garland Brignac, Thomas R. Halbert, John P. Greeley
  • Patent number: 7422679
    Abstract: Naphtha hydrodesulfurization selectivity is increased by reducing the amount of COX (CO plus ½ CO2) in the hydrodesulfurization reaction zone to less than 100 vppm. While this is useful for non-selective hydrodesulfurization, it is particularly useful for selectively desulfurizing an olefin-containing naphtha without octane loss due to olefin saturation by hydrogenation. The COX reduction is achieved by removing COX from the treat gas before it is passed into the reaction zone.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: September 9, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Edward S. Ellis, Thomas R. Halbert, Garland B. Brignac, John P. Greeley, Richard A. Demmin, Theresa A. Lalain
  • Patent number: 7357856
    Abstract: A two stage process for selectively hydrodesulfurizing olefinic and sulfur and nitrogen-containing naphtha feedstreams wherein the first stage is a nitrogen removal stage to produce a naphtha feedstream having reduced levels of nitrogen compounds and a second stage wherein the naphtha feedstream having reduced levels of nitrogen compounds is hydrodesulfuried with a catalyst and under conditions selective to remove sulfur with minimum olefin saturation.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: April 15, 2008
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Peter W. Jacobs, Garland B. Brignac, Thomas R. Halbert, Madhav Acharya, Theresa A. Lelain
  • Patent number: 7297251
    Abstract: A process for the selective hydrodesulfurization of naphtha streams containing a substantial amount of olefins and organically bound sulfur. The naphtha stream is selectively hydrodesulfurized by passing it through a first reaction zone containing a bed of a first hydrodesulfurization catalyst, then passing the resulting product stream through a second reaction zone containing a bed of a second hydrodesulfurization catalyst, which second hydrodesulfurization catalyst contains a lower level of catalytic metals than the first hydrodesulfurization catalyst.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: November 20, 2007
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Edward S. Ellis, Richard A. Demmin, John P. Greeley, Gary B. McVicker, Bruce R. Cook, Garland B. Brignac, Thomas R. Halbert
  • Patent number: 7244352
    Abstract: A process for producing a naphtha having a decreased amount of sulfur by selective hydroprocessing a petroleum feedstream comprising cracked naphtha to reduce its sulfur content with minimum loss of octane. The reduced sulfur naphtha stream contains mercaptan sulfur reversion products that are removed preferably by use of an aqueous base solution containing a catalytically effective amount of a phase transfer catalyst.
    Type: Grant
    Filed: February 7, 2003
    Date of Patent: July 17, 2007
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Thomas R. Halbert, Craig A. McKnight, John P. Greeley, Bruce R. Cook, Garland B. Brignac, Mark A. Greaney, Robert C. Welch
  • Patent number: 7220352
    Abstract: A process for the selective hydrodesulfurization of naphtha streams containing sulfur and olefins. A substantially olefins-free naphtha stream is blended with an olefins/sulfur-containing naphtha stream and hydrodesulfurized resulting in the substantial removal of sulfur without excessive olefin saturation.
    Type: Grant
    Filed: February 24, 2003
    Date of Patent: May 22, 2007
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Thomas R. Halbert, John P. Greeley, Brij N. Gupta, Garland B. Brignac, Chu Siang Loo
  • Patent number: 6913688
    Abstract: A process for the selective hydrodesulfurization of olefinic naphtha streams containing a substantial amount of organically bound sulfur and olefins. The olefinic naphtha stream is selectively hydrodesulfurized in a first sulfur removal stage and resulting product stream, which contains hydrogen sulfide and organosulfur is fractionated at a temperature to produce a light fraction containing less than about 100 wppm organically bound sulfur and a heavy fraction containing greater than about 100 wppm organically bound sulfur. The light fraction is stripped of at least a portion ofits hydrogen sulfide and can be collected or passed to gasoline blending. The heavy fraction is passed to a second sulfur removal stage wherein at least a portion of any remaining organically bound sulfur is removed.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: July 5, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: John C. Coker, Garland B. Brignac, Thomas R. Halbert, John G. Matragrano, Brij Gupta, Robert C. Welch, William E. Winter, Jr.
  • Patent number: 6843905
    Abstract: The invention relates to a process for forming a low-sulfur motor gasoline and the product made therefrom. In one embodiment, process involves separating a catalytically cracked naphtha into at least a light fraction boiling below about 165° F. and a heavy fraction boiling above about 165° F. The light fraction is treated to remove sulfur by a non-hydrotreating method, and the heavy fraction is hydrotreated to remove sulfur to a level of less than about 100 ppm.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: January 18, 2005
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Gordon F. Stuntz, Robert C. W. Welch, Thomas R. Halbert
  • Publication number: 20040222130
    Abstract: The invention relates to a process for forming a low-sulfur motor gasoline and the product made therefrom. In one embodiment, process involves separating a catalytically cracked naphtha into at least a light fraction boiling below about 165° F. and a heavy fraction boiling above about 165° F. The light fraction is treated to remove sulfur by a non-hydrotreating method, and the heavy fraction is hydrotreated to remove sulfur to a level of less than about 100 ppm.
    Type: Application
    Filed: June 10, 2004
    Publication date: November 11, 2004
    Inventors: Gordon F. Stuntz, Robert C.W. Welch, Thomas R. Halbert
  • Publication number: 20040026298
    Abstract: A process for the selective hydrodesulfurization of naphtha streams containing a substantial amount of olefins and organically bound sulfur. The naphtha stream is selectively hydrodesulfurized by passing it through a first reaction zone containing a bed of a first hydrodesulfurization catalyst, then passing the resulting product stream through a second reaction zone containing a bed of a second hydrodesulfurization catalyst, which second hydrodesulfurization catalyst contains a lower level of catalytic metals than the first hydrodesulfurization catalyst.
    Type: Application
    Filed: April 28, 2003
    Publication date: February 12, 2004
    Inventors: Edward S. Ellis, Richard A. Demmin, John P. Greeley, Gary B. McVicker, Bruce R. Cook, Garland B. Brignac, Thomas R. Halbert
  • Publication number: 20030221994
    Abstract: Naphtha hydrodesulfurization selectivity is increased by reducing the amount of COX (CO plus ½ CO2) in the hydrodesulfurization reaction zone to less than 100 vppm. While this is useful for non-selective hydrodesulfurization, it is particularly useful for selectively desulfurizing an olefin-containing naphtha without octane loss due to olefin saturation by hydrogenation. The COX reduction is achieved by removing COX from the treat gas before it is passed into the reaction zone.
    Type: Application
    Filed: May 1, 2003
    Publication date: December 4, 2003
    Inventors: Edward S. Ellis, Thomas R. Halbert, Garland B. Brignac, John P. Greeley, Richard A. Demmin, Theresa A. Lalain
  • Publication number: 20030188994
    Abstract: The invention relates to a process for forming a low-sulfur motor gasoline and the product made therefrom. In one embodiment, process involves separating a catalytically cracked naphtha into at least a light fraction boiling below about 165° F. and a heavy fraction boiling above about 165° F. The light fraction is treated to remove sulfur by a non-hydrotreating method, and the heavy fraction is hydrotreated to remove sulfur to a level of less than about 100 ppm.
    Type: Application
    Filed: January 15, 2003
    Publication date: October 9, 2003
    Inventors: Gordon F. Stuntz, Robert C. W. Welch, Thomas R. Halbert
  • Publication number: 20030188992
    Abstract: A process for decreasing the amount of sulfur in a petroleum stream.
    Type: Application
    Filed: February 7, 2003
    Publication date: October 9, 2003
    Inventors: Thomas R. Halbert, Craig A. McKnight, John P. Greeley, Bruce R. Cook, Garland B. Brignac, Mark A. Greaney, Robert C. Welch