Patents by Inventor Thomas R. Pauly

Thomas R. Pauly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9433899
    Abstract: The invention relates to a method for removing carbon monoxide and hydrocarbons from the exhaust gas of lean-burn internal combustion engines, said exhaust gas being passed over a catalyst which contains platinum supported on one or more refractory supporting materials, pure cerium oxide, and optionally an additional noble metal selected from the group consisting of platinum, palladium and rhodium, wherein the pure cerium oxide is in close contact with the noble metal.
    Type: Grant
    Filed: March 26, 2013
    Date of Patent: September 6, 2016
    Assignee: UMICORE AG & CO. KG
    Inventors: Ruediger Hoyer, Anke Schuler, Stefan Franoschek, Thomas R. Pauly, Gerald Jeske
  • Publication number: 20160051930
    Abstract: The invention relates to a method for removing carbon monoxide and hydrocarbons from the exhaust gas of lean-burn internal combustion engines, said exhaust gas being passed over a catalyst which contains platinum supported on one or more refractory supporting materials, pure cerium oxide, and optionally an additional noble metal selected from the group consisting of platinum, palladium and rhodium, wherein the pure cerium oxide is in close contact with the noble metal.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 25, 2016
    Inventors: Ruediger HOYER, Anke SCHULER, Stefan FRANOSCHEK, Thomas R. PAULY, Gerald JESKE
  • Patent number: 8926925
    Abstract: A catalyst for the selective catalytic reduction of nitrogen oxides in diesel engine exhaust gases using ammonia or a precursor compound decomposable to ammonia. The catalyst includes two superposed coatings applied to a support body, of which the first coating applied directly to the support body includes a transition metal-exchanged zeolite and/or a transition metal-exchanged zeolite-like compound, and effectively catalyzes the SCR reaction. The second coating is applied to the first coating to cover it on the exhaust gas side and prevent hydrocarbons having at least three carbon atoms present in the exhaust gas from contacting the first coating, without blocking the passage of nitrogen oxides and ammonia to the first coating. The second coating may be formed from small-pore zeolites and/or small-pore, zeolite-like compounds, and from suitable oxides, especially silicon dioxide, germanium dioxide, aluminum oxide, titanium dioxide, tin oxide, cerium oxide, zirconium dioxide and mixtures thereof.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: January 6, 2015
    Assignee: Umicore AG & Co. KG
    Inventors: Nicola Soeger, Katja Adelmann, Michael Seyler, Thomas R. Pauly, Gerald Jeske
  • Patent number: 8911697
    Abstract: The invention relates to a catalytically active material for reacting nitrogen oxides with ammonia in the presence of hydrocarbons. The material consists of an inner core (1) made of a zeolite exchanged with one or more transition metals or a zeolite-like compound exchanged with one or more transition metals. The core of the catalytically active material is encased by a shell (2), which is made of one or more oxides selected from silicon dioxide, germanium dioxide, aluminum oxide, titanium oxide, tin oxide, cerium oxide, zirconium dioxide, and mixed oxides thereof.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: December 16, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Nicola Soeger, Katja Adelmann, Michael Seyler, Thomas R. Pauly, Gerald Jeske
  • Patent number: 8821820
    Abstract: A process for improving catalytic activity of a copper-promoted zeolitic catalyst with a chabazite structure, the copper-promoted zeolitic catalyst having a temperature-programmed reduction (TPR) signal in a temperature range from 230° C. to 240° C. as examined in a TPR with a test gas having a hydrogen content of 5% by volume, a heating rate of 10 K/min, and a catalyst sample weight containing from 3 to 8 milligrams of copper calculated as metal.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: September 2, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Michael Seyler, Nicola Soeger, Katja Adelmann, Thomas R. Pauly, Gerald Jeske
  • Patent number: 8617497
    Abstract: The invention relates to the use of mixed oxides made of cerium oxide, zirconium oxide, rare earth sesquioxide and niobium oxide as catalytically active materials for the selective catalytic reduction of nitrogen oxides with ammonia or a compound that can decompose to form ammonia in the exhaust gas of internal combustion engines in motor vehicles that are predominantly leanly operated, and to compositions or catalysts which contain said mixed oxides in combination with zeolite compounds and/or zeolite-like compounds and are suitable for the denitrogenation of lean motor vehicle exhaust gases in all essential operating states.
    Type: Grant
    Filed: April 16, 2011
    Date of Patent: December 31, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Katja Adelmann, Gerald Jeske, Rainer Domesle, Nicola Soeger, Michael Seyler, Anke Schuler, Thomas R. Pauly, Barry W. L. Southward
  • Publication number: 20130336866
    Abstract: The invention relates to a catalytically active material for reacting nitrogen oxides with ammonia in the presence of hydrocarbons. The material consists of an inner core (1) made of a zeolite exchanged with one or more transition metals or a zeolite-like compound exchanged with one or more transition metals. The core of the catalytically active material is encased by a shell (2), which is made of one or more oxides selected from silicon dioxide, germanium dioxide, aluminum oxide, titanium oxide, tin oxide, cerium oxide, zirconium dioxide, and mixed oxides thereof.
    Type: Application
    Filed: March 1, 2012
    Publication date: December 19, 2013
    Applicant: UMICORE AG & CO. KG
    Inventors: Nicola Soeger, Katja Adelmann, Michael Seyler, Thomas R. Pauly, Gerald Jeske
  • Publication number: 20130336863
    Abstract: A catalyst for the selective catalytic reduction of nitrogen oxides in diesel engine exhaust gases using ammonia or a precursor compound decomposable to ammonia is described. The catalyst comprises two superposed coatings applied to a support body, of which the first coating applied directly to the support body comprises a transition metal-exchanged zeolite and/or a transition metal-exchanged zeolite-like compound, and effectively catalyzes the SCR reaction. The second coating has been applied to the first coating so as to cover it on the exhaust gas side. It is configured so as to prevent the contact of hydrocarbons having at least three carbon atoms present in the exhaust gas with the layer beneath, without blocking the passage of nitrogen oxides and ammonia to the first coating.
    Type: Application
    Filed: March 1, 2012
    Publication date: December 19, 2013
    Applicant: UMICORE AG & CO. KG
    Inventors: Nicola Soeger, Katja Adelmann, Michael Seyler, Thomas R. Pauly, Gerald Jeske
  • Publication number: 20130266497
    Abstract: The present invention relates to a process for improving the catalytic activity of a copper-promoted zeolitic catalyst with chabazite structure, to a copper-promoted zeolitic catalyst with chabazite structure and to a process for reducing nitrogen oxides in an offgas stream.
    Type: Application
    Filed: December 14, 2011
    Publication date: October 10, 2013
    Applicant: UMICORE AG & CO. KG
    Inventors: Michael Seyler, Nicola Soeger, Katja Adelmann, Thomas R. Pauly, Gerald Jeske
  • Patent number: 8454917
    Abstract: A nitrogen oxide storage catalyst is provided, which has two catalytically active coatings on a support body. The lower coating applied directly to the support body has a nitrogen oxide storage function and includes platinum as a catalytically active component applied to a homogeneous magnesium-aluminum mixed oxide in combination with a nitrogen oxide storage material, in which a nitrogen oxide storage component is likewise present and applied to a homogeneous magnesium-aluminum mixed oxide. The second layer is notable for three-way catalytic activity, and includes palladium applied to aluminum oxide and barium oxide or strontium oxide, but no platinum.
    Type: Grant
    Filed: January 27, 2010
    Date of Patent: June 4, 2013
    Assignee: Umicore AG & Co. KG
    Inventors: Ruediger Hoyer, Stephan Eckhoff, Thomas R. Pauly
  • Publication number: 20130121902
    Abstract: The invention relates to the use of mixed oxides made of cerium oxide, zirconium oxide, rare earth sesquioxide and niobium oxide as catalytically active materials for the selective catalytic reduction of nitrogen oxides with ammonia or a compound that can decompose to form ammonia in the exhaust gas of internal combustion engines in motor vehicles that are predominantly leanly operated, and to compositions or catalysts which contain said mixed oxides in combination with zeolite compounds and/or zeolite-like compounds and are suitable for the denitrogenation of lean motor vehicle exhaust gases in all essential operating states.
    Type: Application
    Filed: April 16, 2011
    Publication date: May 16, 2013
    Applicant: UMICORE AG & CO. KG
    Inventors: Katja Adelmann, Gerald Jeske, Rainer Domesle, Nicola Soeger, Michael Seyler, Anke Schuler, Thomas R. Pauly, Barry W.L. Southward
  • Publication number: 20110271658
    Abstract: The use of nitrogen oxide storage catalysts in a close-coupled position for the cleaning of the exhaust gases from gasoline engines with direct gasoline injection which are operated with a predominantly lean air/fuel mixture places particular demands on the thermal stability and aging stability of the catalysts to be used. A nitrogen oxide storage catalyst is provided, which is suitable for this use and has two catalytically active coatings on a support body. The lower coating applied directly to the support body has a nitrogen oxide storage function and comprises platinum as a catalytically active component applied to a homogeneous magnesium-aluminum mixed oxide in combination with a nitrogen oxide storage material, in which a nitrogen oxide storage component is likewise present applied to a homogeneous magnesium-aluminum mixed oxide. The compositions of the magnesium-aluminum mixed oxides uses are different.
    Type: Application
    Filed: January 27, 2010
    Publication date: November 10, 2011
    Applicant: UMICORE AG & CO. KG
    Inventors: Ruediger Hoyer, Stephan Eckhoff, Thomas R. Pauly
  • Publication number: 20110142737
    Abstract: A catalyst and a process for selective catalytic reduction of nitrogen oxides in diesel engine exhaust gases with ammonia or a compound decomposable to ammonia are described. The exhaust gas to be cleaned is passed together with ammonia or a compound decomposable to ammonia over a catalyst which comprises a zeolite or a zeolite-like compound containing 1-10% by weight of copper, based on the total weight of the zeolite or of the zeolite-like compound, and a homogeneous cerium-zirconium mixed oxide and/or a cerium oxide. The zeolite used or the zeolite-like compound used is selected from the group consisting of chabazite, SAPO-34, ALPO-34 and zeolite-?.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 16, 2011
    Applicant: UMICORE AG & CO. KG
    Inventors: Michael SEYLER, Nicola Soeger, Katja Adelmann, Anke Schuler, Thomas R. Pauly, Gerald Jeske
  • Patent number: 7119044
    Abstract: An integrated multi-functional catalyst system includes a diesel particulate filter having an inlet side for receiving flow and an opposite outlet side, a substrate in the diesel particulate filter having an interior wall surface and an exterior wall surface, a first washcoat layer applied to the interior wall surface and adjacent the inlet side, and a second washcoat layer applied to the exterior wall surface and adjacent the outlet side, wherein flow distribution through the substrate is dispersed for minimizing back pressure. The diesel particulate filter may be one of a plurality of honeycomb cells.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: October 10, 2006
    Assignee: Delphi Technologies, Inc.
    Inventors: Ming Wei, Thomas R. Pauly, Jiyang Yan, Danan Dou
  • Publication number: 20040254073
    Abstract: An integrated multi-functional catalyst system includes a diesel particulate filter having an inlet side for receiving flow and an opposite outlet side, a substrate in the diesel particulate filter having an interior wall surface and an exterior wall surface, a first washcoat layer applied to the interior wall surface and adjacent the inlet side, and a second washcoat layer applied to the exterior wall surface and adjacent the outlet side, wherein flow distribution through the substrate is dispersed for minimizing back pressure. The diesel particulate filter may be one of a plurality of honeycomb cells.
    Type: Application
    Filed: June 11, 2003
    Publication date: December 16, 2004
    Inventors: Ming Wei, Thomas R. Pauly, Jiyang Yan, Danan Dou
  • Patent number: 6800266
    Abstract: Hybrid mesoporous molecular sieve silica compositions which have intergrown wormhole domains and lamellar or hexagonal domains and prepared from mixtures of water soluble silicate precursors and amine surfactant templates through a neutralization reaction are described. The silica compositions are stable above 600° C.
    Type: Grant
    Filed: January 18, 2001
    Date of Patent: October 5, 2004
    Assignee: Board of Trustees of Michigan State University
    Inventors: Thomas J. Pinnavaia, Thomas R. Pauly, Seong-Su Kim
  • Patent number: 6641657
    Abstract: Porous inorganic silica foam compositions are derived from water soluble silicate precursors and swollen non-ionic polymer templates are described. The compositions are useful as catalyst supports and as catalysts in hydrocarbon cracking and organic reactions, among other applications.
    Type: Grant
    Filed: April 25, 2002
    Date of Patent: November 4, 2003
    Assignee: Board of Trustees of Michigan State University
    Inventors: Thomas J. Pinnavaia, Thomas R. Pauly, Seong-Su Kim
  • Patent number: 6607705
    Abstract: A process for the preparation of mesostructured molecular sieve silicas from inorganic silicon precursors and polyoxyethylene oxide based polymers is described. The silicas are stable upon calcination to 600° to 800° C. The silicas are useful in refining processes.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: August 19, 2003
    Assignee: Board of Trustees of Michigan State University
    Inventors: Thomas J. Pinnavaia, Thomas R. Pauly, Seong-Su Kim
  • Patent number: 6506485
    Abstract: Porous inorganic silica foam compositions are derived from water soluble silicate precursors and swollen non-ionic polymer templates are described. The compositions are useful as catalyst supports and as catalysts in hydrocarbon cracking and organic reactions, among other applications.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: January 14, 2003
    Assignee: Board of Trustees of Michigan State University
    Inventors: Thomas J. Pinnavaia, Thomas R. Pauly, Seong-Su Kim
  • Publication number: 20020160176
    Abstract: Porous inorganic silica foam compositions are derived from water soluble silicate precursors and swollen non-ionic polymer templates are described. The compositions are useful as catalyst supports and as catalysts in hydrocarbon cracking and organic reactions, among other applications.
    Type: Application
    Filed: April 25, 2002
    Publication date: October 31, 2002
    Applicant: Board of Trustees Operating Michigan State University
    Inventors: Thomas J. Pinnavaia, Thomas R. Pauly, Seong-Su Kim