Patents by Inventor Thomas R. Wik

Thomas R. Wik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7557618
    Abstract: Conditioning logic modifies the electrical characteristics of conventional logic circuits to improve speed, power, and timing margins. This is accomplished by adding circuitry to pre-condition the state of the circuit to optimize any desired transition. Basic functionality of the logic circuit in response to the inputs is unchanged, but output delays, power dissipation, and timing margins can be improved and other characteristics of the circuit can also be controlled by the conditioning circuitry such as voltage levels, leakage current and power dissipation. The effect of the conditioning circuitry on the electrical and timing parameters of the logic function is controlled by binary feedback inputs to the conditioning circuitry. Feedback inputs can be generated from any combination of logic states and clock inputs including clock inputs and logic inputs not used in the logic function receiving the feedback input.
    Type: Grant
    Filed: September 24, 2007
    Date of Patent: July 7, 2009
    Inventor: Thomas R. Wik
  • Patent number: 6507524
    Abstract: A memory array has memory elements arranged in rows and columns. Each column has a respective bit line. A plurality of bit line input-output nodes are each switchably coupled to either a respective one of the bit lines or another one of the bit lines.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: January 14, 2003
    Assignee: LSI Logic Corporation
    Inventors: Ghasi Agrawal, Thomas R. Wik
  • Patent number: 6370078
    Abstract: The present invention is directed to a system and method of compensating for coupling capacitance between bit lines in multi-port memories. The complementary bit lines are switched between a core cell and a modified core cell. The modified core cell may invert the connections to the access transistors. This results in the writing of data into the cell correctly while compensating for coupling capacitance.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: April 9, 2002
    Assignee: LSI Logic Corporation
    Inventors: Thomas R. Wik, Ghasi R. Agrawal
  • Patent number: 6233197
    Abstract: A multi-port semiconductor memory includes first and second data ports and a plurality of memory cells arranged in rows and columns. Each column comprises first and second pairs of complementary bit lines, which are coupled to each of the memory cells in that column. The first pair of bit lines cross one another between every N and N+1 of the memory cells the column, where N=2M and M is an integer variable greater than zero. A data inversion circuit is coupled between the first pair of bit lines and the first data port, which selectively inverts the first pair of bit lines as a function of the first port's (M+1)th row address input bit only, as measured from the least significant row address input bit.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: May 15, 2001
    Assignee: LSI Logic Corporation
    Inventors: Ghasi R. Agrawal, Thomas R. Wik
  • Patent number: 6137716
    Abstract: A memory circuit which uses multiple storage mechanisms in each of its memory cells. In one embodiment, the memory circuit includes an array of cells in which each cell has multiple storage elements. At least one of the storage elements performs its function in a different way than the rest of the storage elements. This use of multiple storage mechanisms allows for a greater freedom in memory cell design and allows for the simultaneous storage of multiple states in a single memory cell. Broadly speaking, the present invention contemplates a memory core comprising an address decoder, an array of cells, and a sense amplifier. The address decoder is configured to receive an address and responsively assert a selected word line. The array of cells includes a selected cell coupled to the selected word line, and each cell in the array of cells includes at least two storage elements.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: October 24, 2000
    Assignee: LSI Logic Corporation
    Inventor: Thomas R. Wik
  • Patent number: 6018480
    Abstract: A method is provided for using twisted bit or signal lines and routing restrictions on the logic signal lines to pass logic signals over an on-chip memory. In one embodiment, the memory array includes complementary bitlines which are provided with periodic twists, and the logic signal routing is restricted in that logic signals are either routed perpendicular to the bit lines, or they are routed parallel to the bit lines in such a manner as to ensure equal coupling to both B and B'. The equal coupling is provided by either restricting the length of the logic signal line segment to an integral number of twist wavelengths, or by placing the logic signal line segment so that its midpoint rests on a twist centerline. In another embodiment, the memory array includes bitlines running parallel to a bitline axis, and complementary logic signal lines are routed in pairs.
    Type: Grant
    Filed: April 8, 1998
    Date of Patent: January 25, 2000
    Assignee: LSI Logic Corporation
    Inventors: Thomas R. Wik, Myron Buer, Robin Passow, Ken Redding
  • Patent number: 5987632
    Abstract: A test method for a memory device wherein failures that may only occur under specified worst-case conditions are converted to hard functional failures. These locations are subsequently detected and remapped by built-in self test (BIST) and built-in self-repair (BISR) circuitry. First, a test suite is performed on a memory array which includes redundant row and column locations. Typically, this test suite is performed under conditions which are most likely to induce failure. Row and column locations that are determined to be malfunctioning are scanned out of the memory device, along with the number of available redundant rows and columns. If there are sufficient redundant locations, the failing rows and columns are permanently disabled by blowing each of the corresponding fuse links. When power is subsequently applied to the memory device, BIST will detect rows and columns, including those permanently disabled, with hard functional failures. Accesses to these locations may then be redirected by BISR circuitry.
    Type: Grant
    Filed: May 7, 1997
    Date of Patent: November 16, 1999
    Assignee: LSI Logic Corporation
    Inventors: V. Swamy Irrinki, Thomas R. Wik
  • Patent number: 5982659
    Abstract: A process which enables storage of more than two logic states in a memory cell. In one embodiment, a via is used to couple a diode between a word read line and a data read line. The via has a resistance which is set to one of a plurality of values at the time of manufacture. When the word read line is asserted, the voltage drop sustained across the via is indicative of the stored logic state. An analog-to-digital (A/D) converter is coupled to the data read line so as to sense the voltage drop and determine the state represented. Since the additional logic states may be used to represent additional information bits, this memory circuit increases the number of bits that may be stored per memory cell, thereby increasing the storage density and reducing the cost per bit.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: November 9, 1999
    Assignee: LSI Logic Corporation
    Inventors: V. Swamy Irrinki, Thomas R. Wik, Raymond T. Leung, Ashok Kapoor, Alex Owens
  • Patent number: 5903505
    Abstract: A method for testing refresh operations of a memory array wherein subthreshold leakage current may be set to near worst-case conditions. The memory array includes a first row of memory cells having a first memory cell configured to store a first memory value, and a second row of memory cells having a second memory cell configured to store a second memory value. The method comprises storing a logic high value to the first memory cell as the first memory value, followed by storing a logic low value to the second memory cell as the second memory value. The method further comprises repeatedly driving a write bit line coupled to both the first and second memory cells at a logic low level for a period of a time equal to a refresh interval corresponding to the first memory cell. Additionally, the method includes subsequently reading the first memory value from the first memory cell.
    Type: Grant
    Filed: May 19, 1997
    Date of Patent: May 11, 1999
    Assignee: LSI Logic Corporation
    Inventors: Thomas R. Wik, Tuan Phan, Thien Trieu
  • Patent number: 5867423
    Abstract: A circuit and method which enables storage of more than two logic states in a memory cell by selectively setting threshold voltages of transistors in a memory array according to the present invention. In one embodiment, a memory circuit includes an array of storage transistors. Each storage transistor has a gate connected to an associated read line. When a read line is asserted, the current which flows through a selected storage transistor is indicative of the stored logic state. The current through each transistor is individually selected by setting the threshold voltage of each storage transistor during manufacture. Different transistors in the array are configured with differing threshold voltages to thereby represent different storage states. An analog-to-digital (A/D) converter is coupled to the selected storage transistor so as to sense the current and determine the state represented.
    Type: Grant
    Filed: April 10, 1997
    Date of Patent: February 2, 1999
    Assignee: LSI Logic Corporation
    Inventors: Ashok Kapoor, Alex Owens, Thomas R. Wik, Raymond T. Leung, V. Swamy Irrinki
  • Patent number: 5847990
    Abstract: A memory circuit which enables storage of three logic states in a memory cell. Since the additional logic states may be used to represent additional information bits, this memory circuit increases the number of bits that may be stored per memory cell, thereby increasing the storage density and reducing the cost per bit. The disclosed memory circuit comprises an analog-to-digital converter coupled to detect a current through a transistor in a memory cell. The current is determined by the state of a tri-state flip-flop. By enabling the current to be detected as positive, negative, or zero, it becomes possible to represent more than one bit of information with the state of the flip-flop.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: December 8, 1998
    Assignee: LSI Logic Corporation
    Inventors: V. Swamy Irrinki, Ashok Kapoor, Raymond T. Leung, Alex Owens, Thomas R. Wik
  • Patent number: 5841695
    Abstract: A memory circuit which uses multiple storage mechanisms in each of its memory cells. In one embodiment, the memory circuit comprises a memory cell array and a data sense module. Each cell of the array includes a first, second and third transistors, and a capacitance. The first transistor has a first gate coupled to a first word line, a floating gate which stores a first charge, a first source coupled to a first data line, and a first drain. The second transistor has a second gate coupled to the first drain, a second source coupled to a second word line, and a second drain. The third transistor has a third gate coupled to a third word line, a third source coupled to the second drain, and a third drain coupled to a second data line. The capacitance is coupled between ground and the third source. The capacitance stores a second charge when the second word line is asserted and the third word line is de-asserted. The second gate stores a third charge when the first word line is de-asserted.
    Type: Grant
    Filed: May 29, 1997
    Date of Patent: November 24, 1998
    Assignee: LSI Logic Corporation
    Inventor: Thomas R. Wik
  • Patent number: 5808932
    Abstract: A memory circuit which enables storage of more than two logic states in a memory cell. Since the additional logic states may be used to represent additional information bits, this memory circuit increases the number of bits that may be stored per memory cell, thereby increasing the storage density and reducing the cost per bit. The disclosed memory circuit comprises an analog-to-digital converter coupled to detect a current through a transistor in a memory cell. The current is determined by a charge stored on the transistor's gate. By enabling the current to be detected in discrete increments, it becomes possible to represent more than one bit of information with the charge stored in the memory cell. Usage of additional increments necessitates more precise storage and detection circuitry. In one embodiment, the storage circuitry uses feedback to obtain a greater logic state retrieval accuracy.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: September 15, 1998
    Assignee: LSI Logic Corporation
    Inventors: V. Swamy Irrinki, Ashok Kapoor, Raymond T. Leung, Alex Owens, Thomas R. Wik
  • Patent number: 5796650
    Abstract: A memory circuit wherein subthreshold leakage current may be reduced. The memory circuit includes a memory array composed of one or more storage cells that are each configured to store a memory value on a storage transistor. The storage cells further include a write transistor coupled to the storage transistor that is configured to allow data driven on a write bit line to be stored to the storage transistor. The write bit line is coupled to a write control unit, which includes a buffer and a offset voltage element. The buffer is configured to establish an output voltage on the write bit line in response to an input voltage. The offset voltage element is coupled to the buffer, and is configured to offset the output voltage on the write bit line by a predetermined amount. In one implementation of the write control unit, the buffer is formed by an inverter that includes a p-channel and an n-channel transistor. The offset voltage element is a diode-connected transistor coupled between the inverter and ground.
    Type: Grant
    Filed: May 19, 1997
    Date of Patent: August 18, 1998
    Assignee: LSI Logic Corporation
    Inventors: Thomas R. Wik, Shahryar Aryani
  • Patent number: 5784328
    Abstract: A DRAM memory array including a temperature sensor for adjusting a refresh rate depending upon temperature. The DRAM memory array includes a plurality of memory cells, each configured to allow storage and retrieval of more than two discrete memory states. A refresh circuit is coupled to the memory array for periodically refreshing the discrete storage state of each memory cell. The temperature sensor is situated on the same semiconductor die upon which the memory array is fabricated, and generates a signal indicative of the temperature of the semiconductor die. A control circuit receives the signal from the temperature sensor and responsively generates a refresh rate signal which is provided to control the refresh rate of the refresh circuit. In one specific implementation, a ROM look-up table is coupled to the control circuit and includes a plurality of entries which indicate the desired refresh rates for particular temperatures.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: July 21, 1998
    Assignee: LSI Logic Corporation
    Inventors: V. Swamy Irrinki, Ashok Kapoor, Raymond Leung, Alex Owens, Thomas R. Wik
  • Patent number: 5761110
    Abstract: A system and process which enables storage of more than two logic states in a memory cell. In one embodiment, a programmable resistor is coupled in series with a transistor between a supply voltage and a data read line. When an access signal is asserted, the transistor provides a conductive path, and a voltage drop is sustained by the programmable resistor. The programmable resistor has a resistance which is set during a programming step to one of a plurality of values by passing a heating current through the programmable resistor for one of a corresponding plurality of predetermined lengths of time. When the access signal is asserted, the voltage drop sustained across the programmable resistor is indicative of the stored logic state. An analog-to-digital (A/D) converter is coupled to the data read line so as to sense the voltage drop and determine the state represented.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: June 2, 1998
    Assignee: LSI Logic Corporation
    Inventors: V. Swamy Irrinki, Ashok Kapoor, Raymond T. Leung, Alex Owens, Thomas R. Wik
  • Patent number: 5559463
    Abstract: High-efficiency clock generator circuits having single or complementary outputs for driving capacitive loads. The clock generator has therein at least one pair of complementary FET switches, coupled between the output of the generator and power supply rails, and an inductor. The generator is operated at a frequency approximately equal the resonant frequency of the inductor combined with the capacitance of the load. Energy normally stored in the load and dissipated in the FETs as in conventional clock generators is instead stored in the inductor and returned to the loads for reuse.
    Type: Grant
    Filed: April 18, 1994
    Date of Patent: September 24, 1996
    Assignee: Lucent Technologies Inc.
    Inventors: John S. Denker, Alexander G. Dickinson, Alan H. Kramer, Thomas R. Wik
  • Patent number: 5506519
    Abstract: An energy efficient logic gate circuit design that provides a substantially constant load to a clock source regardless of logic signal inputs to, or outputs from, the gate. The gate provides two complementary outputs and utilizes cross-coupled transistors to ensure that the outputs remain valid (complementary) after the logic inputs become invalid. Two blocks, each having a node coupling to the clock source and performing complementary logic functions, in combination with diodes for recharging the outputs of the gate, present the constant load to the clock source.
    Type: Grant
    Filed: June 3, 1994
    Date of Patent: April 9, 1996
    Assignee: AT&T Corp.
    Inventors: Steven C. Avery, John S. Denker, Alexander G. Dickinson, Alan H. Kramer, Thomas R. Wik