Patents by Inventor Thomas Rector Bieler

Thomas Rector Bieler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11724325
    Abstract: The disclosure relates to a brazing method for joining substrates, in particular where one of the substrates is difficult to wet with molten braze material. The method includes formation of a porous metal layer on a first substrate to assist wetting of the first substrate with a molten braze metal, which in turn permits joining of the first substrate with a second substrate via a braze metal later in an assembled brazed joint. Ceramic substrates can be particularly difficult to wet with molten braze metals, and the disclosed method can be used to join a ceramic substrate to another substrate. The brazed joint can be incorporated into a solid-oxide fuel cell, for example as a stack component thereof, in particular when the first substrate is a ceramic substrate and the joined substrate is a metallic substrate.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: August 15, 2023
    Assignees: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY, DELPHI TECHNOLOGIES, LLC
    Inventors: Jason Dale Nicholas, Quan Zhou, Thomas Rector Bieler, Rick Daniel Kerr
  • Publication number: 20220167501
    Abstract: The disclosure generally relates to a method of creating patterned metallic circuits (e.g., silver circuits) on a substrate (e.g., a ceramic substrate). A porous metal interlayer (e.g., porous nickel) is applied to the substrate to improve wetting and adhesion of the patterned metal circuit material to the substrate. The substrate is heated to a temperature sufficient to melt the patterned metal circuit material but not the porous metal interlayer. Spreading of molten metal circuit material on the substrate is controlled by the porous metal interlayer, which can itself be patterned, such as having a defined circuit pattern. Thick-film silver or other metal circuits can be custom designed in complicated shapes for high temperature/high power applications. The materials designated for the circuit design allows for a low-cost method of generating silver circuits other metal circuits on a ceramic substrate.
    Type: Application
    Filed: February 10, 2022
    Publication date: May 26, 2022
    Inventors: Jason Dale Nicholas, Quan Zhou, Thomas Rector Bieler
  • Patent number: 11284510
    Abstract: The disclosure generally relates to a method of creating patterned metallic circuits (e.g., silver circuits) on a substrate (e.g., a ceramic substrate). A porous metal interlayer (e.g., porous nickel) is applied to the substrate to improve wetting and adhesion of the patterned metal circuit material to the substrate. The substrate is heated to a temperature sufficient to melt the patterned metal circuit material but not the porous metal interlayer. Spreading of molten metal circuit material on the substrate is controlled by the porous metal interlayer, which can itself be patterned, such as having a defined circuit pattern. Thick-film silver or other metal circuits can be custom designed in complicated shapes for high temperature/high power applications. The materials designated for the circuit design allows for a low-cost method of generating silver circuits other metal circuits on a ceramic substrate.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: March 22, 2022
    Assignee: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY
    Inventors: Jason Dale Nicholas, Quan Zhou, Thomas Rector Bieler
  • Publication number: 20220055133
    Abstract: The disclosure relates to a brazing method for joining substrates, in particular where one of the substrates is difficult to wet with molten braze material. The method includes formation of a porous metal layer on a first substrate to assist wetting of the first substrate with a molten braze metal, which in turn permits joining of the first substrate with a second substrate via a braze metal later in an assembled brazed joint. Ceramic substrates can be particularly difficult to wet with molten braze metals, and the disclosed method can be used to join a ceramic substrate to another substrate. The brazed joint can be incorporated into a solid-oxide fuel cell, for example as a stack component thereof, in particular when the first substrate is a ceramic substrate and the joined substrate is a metallic substrate.
    Type: Application
    Filed: November 4, 2021
    Publication date: February 24, 2022
    Inventors: Jason Dale Nicholas, Quan Zhou, Thomas Rector Bieler, Rick Daniel Kerr
  • Patent number: 11167363
    Abstract: The disclosure relates to a brazing method for joining substrates, in particular where one of the substrates is difficult to wet with molten braze material. The method includes formation of a porous metal layer on a first substrate to assist wetting of the first substrate with a molten braze metal, which in turn permits joining of the first substrate with a second substrate via a braze metal later in an assembled brazed joint. Ceramic substrates can be particularly difficult to wet with molten braze metals, and the disclosed method can be used to join a ceramic substrate to another substrate. The brazed joint can be incorporated into a solid-oxide fuel cell, for example as a stack component thereof, in particular when the first substrate is a ceramic substrate and the joined substrate is a metallic substrate.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: November 9, 2021
    Assignees: BOARD OF TRUSTEES OF MICHIGAN STATE UNIVERSITY, DELPHI TECHNOLOGIES, LLC
    Inventors: Jason Dale Nicholas, Quan Zhou, Thomas Rector Bieler, Rick Daniel Kerr
  • Publication number: 20190320528
    Abstract: The disclosure generally relates to a method of creating patterned metallic circuits (e.g., silver circuits) on a substrate (e.g., a ceramic substrate). A porous metal interlayer (e.g., porous nickel) is applied to the substrate to improve wetting and adhesion of the patterned metal circuit material to the substrate. The substrate is heated to a temperature sufficient to melt the patterned metal circuit material but not the porous metal interlayer. Spreading of molten metal circuit material on the substrate is controlled by the porous metal interlayer, which can itself be patterned, such as having a defined circuit pattern. Thick-film silver or other metal circuits can be custom designed in complicated shapes for high temperature/high power applications. The materials designated for the circuit design allows for a low-cost method of generating silver circuits other metal circuits on a ceramic substrate.
    Type: Application
    Filed: April 17, 2019
    Publication date: October 17, 2019
    Inventors: Jason Dale Nicholas, Quan Zhou, Thomas Rector Bieler
  • Publication number: 20180326524
    Abstract: The disclosure relates to a brazing method for joining substrates, in particular where one of the substrates is difficult to wet with molten braze material. The method includes formation of a porous metal layer on a first substrate to assist wetting of the first substrate with a molten braze metal, which in turn permits joining of the first substrate with a second substrate via a braze metal later in an assembled brazed joint. Ceramic substrates can be particularly difficult to wet with molten braze metals, and the disclosed method can be used to join a ceramic substrate to another substrate. The brazed joint can be incorporated into a solid-oxide fuel cell, for example as a stack component thereof, in particular when the first substrate is a ceramic substrate and the joined substrate is a metallic substrate.
    Type: Application
    Filed: May 9, 2018
    Publication date: November 15, 2018
    Inventors: Jason Dale Nicholas, Quan Zhou, Thomas Rector Bieler, Rick Daniel Kerr